FFTW

for version 3.3.10, 10 December 2020

Matteo Frigo
Steven G. Johnson

This manual is for FFTW (version 3.3.10, 10 December 2020).
Copyright (©) 2003 Matteo Frigo.
Copyright (©) 2003 Massachusetts Institute of Technology.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except
that this permission notice may be stated in a translation approved by the Free
Software Foundation.

Table of Contents

1

2

Introduction, 1
Tutorial 3
2.1 Complex One-Dimensional DFTs, 3
2.2 Complex Multi-Dimensional DFTs............. 5
2.3 One-Dimensional DFTs of Real Data 6
2.4 Multi-Dimensional DFTs of Real Data.......................... 7
2.5 More DFTsof Real Datacoiiiiiiii... 10
2.5.1 The Halfcomplex-format DFT 11
2.5.2 Real even/odd DFTs (cosine/sine transforms)............. 11
2.5.3 The Discrete Hartley Transform 13
Other Important Topics....................... 15
3.1 SIMD alignment and fftw_malloc, 15
3.2 Multi-dimensional Array Format............................... 15
3.2.1 Row-major Format i 15
3.2.2 Column-major Format.............o . 16
3.2.3 Fixed-size Arrays in C..........oiiiiiiiiiiiiii i 16
3.2.4 Dynamic Arraysin C.......... ... 17
3.2.5 Dynamic Arrays in C—The Wrong Way 17
3.3 Words of Wisdom—Saving Plans 18
3.4 Caveats in Using Wisdom, 18
FFTW Reference............................... 21
4.1 Data Typesand Files..........oo i, 21
4.1.1 Complex nUMbErsttt 21
4.1.2 PreciSiono 21
4.1.3 Memory Allocation, 22
4.2 Using Plans ..o 22
4.3 BasicInterface 24
4.3.1 Complex DETS e 24
4.3.2 Planner Flags ... 25
4.3.3 Real-data DFTs..... ..o 27
4.3.4 Real-data DFT Array Format............................. 28
4.3.5 Real-to-Real Transforms..............., 29
4.3.6 Real-to-Real Transform Kinds 30
4.4 Advanced Interface........... ... i 31
4.4.1 Advanced Complex DFTs......... ..o, 31
4.4.2 Advanced Real-data DFTs.......... 33
4.4.3 Advanced Real-to-real Transforms 33
4.5 Gurulnterfaceo i 34

4.5.1 Interleaved and split arraysccooiiiiiiiiia.. 34

ii

4.5.2 Guru vector and transform sizes 34
4.5.3 Guru Complex DFTs 35
4.5.4 Guru Real-data DFTs.................o. ... 36
4.5.5 Guru Real-to-real Transforms............................. 37
4.5.6 64-bit Guru Interface.......... o L 38
4.6 New-array Execute Functions.................................. 38
4.7 Wisdomi . ..o 40
4.7.1 Wisdom Export 40
4.7.2 Wisdom Import ... 41
4.7.3 Forgetting Wisdom i 41
4.7.4 Wisdom Utilities ...t 41
4.8 What FFTW Really Computes.............c.oooiiiiiiii.. 42
4.8.1 The 1d Discrete Fourier Transform (DFT) 42
4.8.2 The 1d Real-data DFTo it 43
4.8.3 1d Real-even DFTs (DCTS). ..o, 43
4.8.4 1d Real-odd DFTs (DSTs).......cooiiiiiiiiiiiii it 45
4.8.5 1d Discrete Hartley Transforms (DHTS)................... 46
4.8.6 Multi-dimensional Transforms............................. 46

5 Multi-threaded FFTW......................... 49
5.1 Installation and Supported Hardware/Software................. 49
5.2 Usage of Multi-threaded FFTW oL, 49
5.3 How Many Threads to Use? ..., 51
5.4 Thread safetyo 51
6 Distributed-memory FFTW with MPI....... 53
6.1 FFTW MPI Installation..............., 53
6.2 Linking and Initializing MPTFFTW, 54
6.3 2d MPI example. ... 54
6.4 MPI Data Distribution i, 56
6.4.1 Basic and advanced distribution interfaces 56
6.4.2 Load balancing 58
6.4.3 Transposed distributions............ oL 58
6.4.4 One-dimensional distributions.............. 59
6.5 Multi-dimensional MPI DFTs of Real Data.................... 60
6.6 Other multi-dimensional Real-Data MPI Transforms........... 62
6.7 FEFTW MPI Transposesouuuuuitiiiiieeeeeniiniiiieee. 62
6.7.1 Basic distributed-transpose interface...................... 63
6.7.2 Advanced distributed-transpose interface.................. 63
6.7.3 An improved replacement for MPI_Alltoall 64
6.8 FFTW MPI Wisdom ..., 64
6.9 Avoiding MPI Deadlocks ..., 65
6.10 FFTW MPI Performance Tips............oooiiiiiiiiiii... 66
6.11 Combining MPI and Threads............ ..., 66
6.12 FFTW MPI Reference. ..., 67
6.12.1 MPI Files and Data Types.............ooiiiiiiiii.. 67

6.12.2 MPI Initialization ... 68

6.12.3 Using MPIPlans ... 68
6.12.4 MPI Data Distribution Functions........................ 69
6.12.5 MPI Plan Creationccoiiiiiiiiiiiiiinnn.... 70
6.12.6 MPI Wisdom Communication 74

6.13 FFTW MPI Fortran Interface 74

7 Calling FFTW from Modern Fortran......... 77
7.1 Overview of Fortran interface................ i, 77
7.1.1 Extended and quadruple precision in Fortran.............. 78

7.2 Reversing array dimensions..............oooiiiiiiiiiiiaan.. 78
7.3 FFTW Fortran type reference, 80
7.4 Plan execution in Fortran............o i 81
7.5 Allocating aligned memory in Fortran.......................... 82
7.6 Accessing the wisdom API from Fortran....................... 83
7.6.1 Wisdom File Export/Import from Fortran 83

7.6.2 Wisdom String Export/Import from Fortran.............. 84

7.6.3 Wisdom Generic Export/Import from Fortran............. 84

7.7 Defining an FFTW module................ 85

8 Calling FFTW from Legacy Fortran.......... 87
8.1 Fortran-interface routines., 87
8.2 FFTW Constants in Fortran................................... 88
8.3 FFTW Execution in Fortran................................... 88
8.4 Fortran Exampleso i 89
8.5 Wisdom of Fortran? ..., 91

9 Upgrading from FFTW version 2............. 93
10 Installation and Customization.............. 97
10.1 Installation on Unix......... .. i 97
10.2 Installation on non-Unix systemsc.ooiiiia.. 99
10.3 Cycle Counters.ouuuiin e 100
10.4 Generating your own code.........ooueiiiiiiiiiiiiiii... 100
11 Acknowledgments 103
12 License and Copyright 105
13 Concept Index 107

14 Library Index.................. 109

iii

1 Introduction

This manual documents version 3.3.10 of FFTW, the Fastest Fourier Transform in the
West. FFTW is a comprehensive collection of fast C routines for computing the discrete
Fourier transform (DFT) and various special cases thereof.

e FFTW computes the DFT of complex data, real data, even- or odd-symmetric real data
(these symmetric transforms are usually known as the discrete cosine or sine transform,
respectively), and the discrete Hartley transform (DHT) of real data.

e The input data can have arbitrary length. FFTW employs O(nlogn) algorithms for
all lengths, including prime numbers.

e FFTW supports arbitrary multi-dimensional data.

e FFTW supports the SSE, SSE2, AVX, AVX2, AVX512, KCVI, Altivec, VSX, and
NEON vector instruction sets.

e FFTW includes parallel (multi-threaded) transforms for shared-memory systems.

e Starting with version 3.3, FFTW includes distributed-memory parallel transforms using
MPI.

We assume herein that you are familiar with the properties and uses of the DFT that are
relevant to your application. Otherwise, see e.g. The Fast Fourier Transform and Its Ap-
plications by E. O. Brigham (Prentice-Hall, Englewood Cliffs, NJ, 1988). Our web page
(http://www.fftw.org) also has links to FFT-related information online.

In order to use FFTW effectively, you need to learn one basic concept of FFTW’s internal
structure: FFTW does not use a fixed algorithm for computing the transform, but instead it
adapts the DFT algorithm to details of the underlying hardware in order to maximize per-
formance. Hence, the computation of the transform is split into two phases. First, FFTW'’s
planner “learns” the fastest way to compute the transform on your machine. The planner
produces a data structure called a plan that contains this information. Subsequently, the
plan is executed to transform the array of input data as dictated by the plan. The plan can
be reused as many times as needed. In typical high-performance applications, many trans-
forms of the same size are computed and, consequently, a relatively expensive initialization
of this sort is acceptable. On the other hand, if you need a single transform of a given size,
the one-time cost of the planner becomes significant. For this case, FFTW provides fast
planners based on heuristics or on previously computed plans.

FFTW supports transforms of data with arbitrary length, rank, multiplicity, and a general
memory layout. In simple cases, however, this generality may be unnecessary and confusing.
Consequently, we organized the interface to FFTW into three levels of increasing generality.
e The basic interface computes a single transform of contiguous data.
e The advanced interface computes transforms of multiple or strided arrays.

e The guru interface supports the most general data layouts, multiplicities, and strides.

We expect that most users will be best served by the basic interface, whereas the guru
interface requires careful attention to the documentation to avoid problems.

Besides the automatic performance adaptation performed by the planner, it is also possible
for advanced users to customize FFTW manually. For example, if code space is a concern, we

http://www.fftw.org
http://www.fftw.org

2 FFTW 3.3.10

provide a tool that links only the subset of FFTW needed by your application. Conversely,
you may need to extend FFTW because the standard distribution is not sufficient for your
needs. For example, the standard FFTW distribution works most efficiently for arrays
whose size can be factored into small primes (2, 3, 5, and 7), and otherwise it uses a slower
general-purpose routine. If you need efficient transforms of other sizes, you can use FFTW’s
code generator, which produces fast C programs (“codelets”) for any particular array size
you may care about. For example, if you need transforms of size 513 = 19 - 33, you can
customize FFTW to support the factor 19 efficiently.

For more information regarding FFTW, see the paper, “The Design and Implementation of
FFTW3,” by M. Frigo and S. G. Johnson, which was an invited paper in Proc. IEEE 93
(2), p. 216 (2005). The code generator is described in the paper “A fast Fourier transform
compiler”, by M. Frigo, in the Proceedings of the 1999 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Atlanta, Georgia, May 1999.
These papers, along with the latest version of FFTW, the FAQ, benchmarks, and other
links, are available at the FFTW home page (http://www.fftw.org).

The current version of FFTW incorporates many good ideas from the past thirty years
of FF'T literature. In one way or another, FFTW uses the Cooley-Tukey algorithm, the
prime factor algorithm, Rader’s algorithm for prime sizes, and a split-radix algorithm (with
a “conjugate-pair” variation pointed out to us by Dan Bernstein). FFTW’s code generator
also produces new algorithms that we do not completely understand. The reader is referred
to the cited papers for the appropriate references.

The rest of this manual is organized as follows. We first discuss the sequential (single-
processor) implementation. We start by describing the basic interface/features of FETW
in Chapter 2 [Tutorial], page 3. Next, Chapter 3 [Other Important Topics], page 15, dis-
cusses data alignment (see Section 3.1 [SIMD alignment and fftw_malloc], page 15), the
storage scheme of multi-dimensional arrays (see Section 3.2 [Multi-dimensional Array For-
mat|, page 15), and FFTW’s mechanism for storing plans on disk (see Section 3.3 [Words
of Wisdom-Saving Plans|, page 18). Next, Chapter 4 [FFTW Reference], page 21, pro-
vides comprehensive documentation of all FFTW’s features. Parallel transforms are dis-
cussed in their own chapters: Chapter 5 [Multi-threaded FFTW], page 49, and Chapter 6
[Distributed-memory FFTW with MPI|, page 53. Fortran programmers can also use FFTW,
as described in Chapter 8 [Calling FFTW from Legacy Fortran]|, page 87, and Chapter 7
[Calling FFTW from Modern Fortran|, page 77. Chapter 10 [Installation and Customiza-
tion], page 97, explains how to install FFTW in your computer system and how to adapt
FFTW to your needs. License and copyright information is given in Chapter 12 [License
and Copyright], page 105. Finally, we thank all the people who helped us in Chapter 11
[Acknowledgments|, page 103.

http://www.fftw.org

2 Tutorial

This chapter describes the basic usage of FF'TW, i.e., how to compute the Fourier transform
of a single array. This chapter tells the truth, but not the whole truth. Specifically, FFTW
implements additional routines and flags that are not documented here, although in many
cases we try to indicate where added capabilities exist. For more complete information, see
Chapter 4 [FFTW Reference|, page 21. (Note that you need to compile and install FFTW
before you can use it in a program. For the details of the installation, see Chapter 10
[Installation and Customization], page 97.)

We recommend that you read this tutorial in order.! At the least, read the first section (see
Section 2.1 [Complex One-Dimensional DFTs|, page 3) before reading any of the others,
even if your main interest lies in one of the other transform types.

Users of FFTW version 2 and earlier may also want to read Chapter 9 [Upgrading from
FFTW version 2], page 93.

2.1 Complex One-Dimensional DFTs

Plan: To bother about the best method of accomplishing an accidental result.
[Ambrose Bierce, The Enlarged Devil’s Dictionary.

The basic usage of FF'TW to compute a one-dimensional DFT of size N is simple, and it
typically looks something like this code:

#tinclude <fftw3.h>

fftw_complex *in, *out;
fftw_plan p;

in = (fftw_complex*) fftw_malloc(sizeof (fftw_complex) * N);
out = (fftw_complex*) fftw_malloc(sizeof (fftw_complex) * N);
P = fftw_plan_dft_ld(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE);

fftw_execute(p); /* repeat as needed */

fftw_destroy_plan(p);
fftw_free(in); fftw_free(out);
}

You must link this code with the £ftw3 library. On Unix systems, link with -1fftw3 -1m.

The example code first allocates the input and output arrays. You can allocate them in
any way that you like, but we recommend using fftw_malloc, which behaves like malloc
except that it properly aligns the array when SIMD instructions (such as SSE and Altivec)
are available (see Section 3.1 [SIMD alignment and fftw_malloc], page 15). [Alternatively,

1 You can read the tutorial in bit-reversed order after computing your first transform.

4 FFTW 3.3.10

we provide a convenient wrapper function fftw_alloc_complex(N) which has the same
effect.

The data is an array of type fftw_complex, which is by default a double[2] composed of
the real (in[i] [0]) and imaginary (in[i] [1]) parts of a complex number.

The next step is to create a plan, which is an object that contains all the data that FFTW
needs to compute the FFT. This function creates the plan:

fftw_plan fftw_plan_dft_1d(int n, fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

The first argument, n, is the size of the transform you are trying to compute. The size n
can be any positive integer, but sizes that are products of small factors are transformed
most efficiently (although prime sizes still use an O(nlogn) algorithm).

The next two arguments are pointers to the input and output arrays of the transform.
These pointers can be equal, indicating an in-place transform.

The fourth argument, sign, can be either FFTW_FORWARD (-1) or FFTW_BACKWARD (+1), and
indicates the direction of the transform you are interested in; technically, it is the sign of
the exponent in the transform.

The flags argument is usually either FFTW_MEASURE or FFTW_ESTIMATE. FFTW_MEASURE
instructs FFTW to run and measure the execution time of several FFTs in order to find the
best way to compute the transform of size n. This process takes some time (usually a few
seconds), depending on your machine and on the size of the transform. FFTW_ESTIMATE,
on the contrary, does not run any computation and just builds a reasonable plan that is
probably sub-optimal. In short, if your program performs many transforms of the same size
and initialization time is not important, use FFTW_MEASURE; otherwise use the estimate.

You must create the plan before initializing the input, because FFTW_MEASURE overwrites the
in/out arrays. (Technically, FFTW_ESTIMATE does not touch your arrays, but you should
always create plans first just to be sure.)

Once the plan has been created, you can use it as many times as you like for transforms on
the specified in/out arrays, computing the actual transforms via fftw_execute(plan):

void fftw_execute(const fftw_plan plan);

The DFT results are stored in-order in the array out, with the zero-frequency (DC) com-
ponent in out [0]. If in !'= out, the transform is out-of-place and the input array in is not
modified. Otherwise, the input array is overwritten with the transform.

If you want to transform a different array of the same size, you can create a new plan with
fftw_plan_dft_1d and FFTW automatically reuses the information from the previous
plan, if possible. Alternatively, with the “guru” interface you can apply a given plan to a
different array, if you are careful. See Chapter 4 [FFTW Reference|, page 21.

When you are done with the plan, you deallocate it by calling fftw_destroy_plan(plan):
void fftw_destroy_plan(fftw_plan plan);

If you allocate an array with fftw_malloc() you must deallocate it with fftw_free(). Do
not use free() or, heaven forbid, delete.

Chapter 2: Tutorial 5

FFTW computes an unnormalized DFT. Thus, computing a forward followed by a backward
transform (or vice versa) results in the original array scaled by n. For the definition of the
DFT, see Section 4.8 [What FFTW Really Computes|, page 42.

If you have a C compiler, such as gcc, that supports the C99 standard, and you #include
<complex.h> before <fftw3.h>, then fftw_complex is the native double-precision complex
type and you can manipulate it with ordinary arithmetic. Otherwise, FFTW defines its
own complex type, which is bit-compatible with the C99 complex type. See Section 4.1.1
[Complex numbers|, page 21. (The C++ <complex> template class may also be usable via
a typecast.)

To use single or long-double precision versions of FEFTW, replace the fftw_ prefix by fftwf_
or fftwl_ and link with -1fftw3f or -1fftw31, but use the same <fftw3.h> header file.

Many more flags exist besides FFTW_MEASURE and FFTW_ESTIMATE. For example, use FFTW_
PATIENT if you're willing to wait even longer for a possibly even faster plan (see Chapter 4
[FFTW Reference], page 21). You can also save plans for future use, as described by
Section 3.3 [Words of Wisdom-Saving Plans], page 18.

2.2 Complex Multi-Dimensional DFT's

Multi-dimensional transforms work much the same way as one-dimensional transforms: you
allocate arrays of fftw_complex (preferably using fftw_malloc), create an fftw_plan,
execute it as many times as you want with fftw_execute(plan), and clean up with fftw_
destroy_plan(plan) (and fftw_free).

FFTW provides two routines for creating plans for 2d and 3d transforms, and one routine
for creating plans of arbitrary dimensionality. The 2d and 3d routines have the following
signature:

fftw_plan fftw_plan_dft_2d(int n0O, int nil,
fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

fftw_plan fftw_plan_dft_3d(int nO, int nl, int n2,
fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

These routines create plans for n0 by n1 two-dimensional (2d) transforms and n0 by n1 by
n2 3d transforms, respectively. All of these transforms operate on contiguous arrays in the
C-standard row-major order, so that the last dimension has the fastest-varying index in
the array. This layout is described further in Section 3.2 [Multi-dimensional Array Format],
page 15.

FFTW can also compute transforms of higher dimensionality. In order to avoid confusion
between the various meanings of the the word “dimension”, we use the term rank to denote
the number of independent indices in an array.? For example, we say that a 2d transform
has rank 2, a 3d transform has rank 3, and so on. You can plan transforms of arbitrary
rank by means of the following function:

fftw_plan fftw_plan_dft(int rank, const int *n,

The term “rank” is commonly used in the APL, FORTRAN, and Common Lisp traditions, although it is
not so common in the C world.

6 FFTW 3.3.10

fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

Here, n is a pointer to an array n[rank] denoting an n[0] by n[1] by ... by n[rank-1]
transform. Thus, for example, the call

fftw_plan_dft_2d(n0, nl, in, out, sign, flags);

is equivalent to the following code fragment:

int n[2];
n[0] = nO;
n[1] = ni;

fftw_plan_dft(2, n, in, out, sign, flags);

fftw_plan_dft is not restricted to 2d and 3d transforms, however, but it can plan trans-
forms of arbitrary rank.

You may have noticed that all the planner routines described so far have overlapping func-
tionality. For example, you can plan a 1d or 2d transform by using fftw_plan_dft with
a rank of 1 or 2, or even by calling fftw_plan_dft_3d with n0 and/or n1 equal to 1
(with no loss in efficiency). This pattern continues, and FFTW’s planning routines in gen-
eral form a “partial order,” sequences of interfaces with strictly increasing generality but
correspondingly greater complexity.

fftw_plan_dft is the most general complex-DFT routine that we describe in this tutorial,
but there are also the advanced and guru interfaces, which allow one to efficiently combine
multiple/strided transforms into a single FFTW plan, transform a subset of a larger multi-
dimensional array, and/or to handle more general complex-number formats. For more
information, see Chapter 4 [FFTW Reference], page 21.

2.3 One-Dimensional DFTs of Real Data

In many practical applications, the input data in[i] are purely real numbers, in which case
the DFT output satisfies the “Hermitian” redundancy: out [i] is the conjugate of out [n-i].
It is possible to take advantage of these circumstances in order to achieve roughly a factor
of two improvement in both speed and memory usage.

In exchange for these speed and space advantages, the user sacrifices some of the simplicity
of FFTW’s complex transforms. First of all, the input and output arrays are of different
stzes and types: the input is n real numbers, while the output is n/2+1 complex numbers
(the non-redundant outputs); this also requires slight “padding” of the input array for
in-place transforms. Second, the inverse transform (complex to real) has the side-effect of
overwriting its input array, by default. Neither of these inconveniences should pose a serious
problem for users, but it is important to be aware of them.

The routines to perform real-data transforms are almost the same as those for complex
transforms: you allocate arrays of double and/or fftw_complex (preferably using fftw_
malloc or fftw_alloc_complex), create an fftw_plan, execute it as many times as you
want with fftw_execute(plan), and clean up with fftw_destroy_plan(plan) (and fftw_
free). The only differences are that the input (or output) is of type double and there are
new routines to create the plan. In one dimension:

fftw_plan fftw_plan_dft_r2c_1d(int n, double *in, fftw_complex *out,

Chapter 2: Tutorial 7

unsigned flags);
fftw_plan fftw_plan_dft_c2r_1d(int n, fftw_complex *in, double *out,
unsigned flags);

for the real input to complex-Hermitian output (r2c) and complex-Hermitian input to real
output (c2r) transforms. Unlike the complex DFT planner, there is no sign argument.
Instead, r2c DFTs are always FFTW_FORWARD and c2r DFTs are always FFTW_BACKWARD.
(For single/long-double precision fftwf and fftwl, double should be replaced by float
and long double, respectively.)

Here, n is the “logical” size of the DFT, not necessarily the physical size of the array. In
particular, the real (double) array has n elements, while the complex (fftw_complex) array
has n/2+1 elements (where the division is rounded down). For an in-place transform, in
and out are aliased to the same array, which must be big enough to hold both; so, the
real array would actually have 2% (n/2+1) elements, where the elements beyond the first n
are unused padding. (Note that this is very different from the concept of “zero-padding” a
transform to a larger length, which changes the logical size of the DFT by actually adding
new input data.) The kth element of the complex array is exactly the same as the kth
element of the corresponding complex DFT. All positive n are supported; products of small
factors are most efficient, but an O(nlogn) algorithm is used even for prime sizes.

As noted above, the c2r transform destroys its input array even for out-of-place transforms.
This can be prevented, if necessary, by including FFTW_PRESERVE_INPUT in the flags, with
unfortunately some sacrifice in performance. This flag is also not currently supported for
multi-dimensional real DFTs (next section).

Readers familiar with DFTs of real data will recall that the Oth (the “DC”) and n/2-th (the
“Nyquist” frequency, when n is even) elements of the complex output are purely real. Some
implementations therefore store the Nyquist element where the DC imaginary part would
go, in order to make the input and output arrays the same size. Such packing, however, does
not generalize well to multi-dimensional transforms, and the space savings are miniscule in
any case; FFTW does not support it.

An alternative interface for one-dimensional r2c¢ and c2r DFTs can be found in the ‘r2r’
interface (see Section 2.5.1 [The Halfcomplex-format DFT], page 11), with “halfcomplex”-
format output that is the same size (and type) as the input array. That interface, although
it is not very useful for multi-dimensional transforms, may sometimes yield better perfor-
mance.

2.4 Multi-Dimensional DFTs of Real Data

Multi-dimensional DFTs of real data use the following planner routines:

fftw_plan fftw_plan_dft_r2c_2d(int n0, int nil,
double *in, fftw_complex *out,
unsigned flags);
fftw_plan fftw_plan_dft_r2c_3d(int nO, int nl, int n2,
double *in, fftw_complex *out,
unsigned flags);
fftw_plan fftw_plan_dft_r2c(int rank, const int *n,
double *in, fftw_complex *out,

8 FFTW 3.3.10

unsigned flags);

as well as the corresponding c2r routines with the input/output types swapped. These
routines work similarly to their complex analogues, except for the fact that here the complex
output array is cut roughly in half and the real array requires padding for in-place transforms
(as in 1d, above).

As before, n is the logical size of the array, and the consequences of this on the the format
of the complex arrays deserve careful attention. Suppose that the real data has dimensions
Ng X N1 X Ny X --+ X ng_y (in row-major order). Then, after an r2c¢ transform, the output
isan ng X ny X ng X --+ X (ng_1/2+ 1) array of fftw_complex values in row-major order,
corresponding to slightly over half of the output of the corresponding complex DFT. (The
division is rounded down.) The ordering of the data is otherwise exactly the same as in the
complex-DFT case.

For out-of-place transforms, this is the end of the story: the real data is stored as a row-
major array of size ng X ny; X ny X -+ X ng_; and the complex data is stored as a row-major
array of size ng X ny X ng X -+ X (ng_1/2+1) .

For in-place transforms, however, extra padding of the real-data array is necessary because
the complex array is larger than the real array, and the two arrays share the same memory
locations. Thus, for in-place transforms, the final dimension of the real-data array must
be padded with extra values to accommodate the size of the complex data—two values if
the last dimension is even and one if it is odd. That is, the last dimension of the real data
must physically contain 2(ny_1/2 4+ 1) double values (exactly enough to hold the complex
data). This physical array size does not, however, change the logical array size—only ng_;
values are actually stored in the last dimension, and n,_; is the last dimension passed to
the plan-creation routine.

For example, consider the transform of a two-dimensional real array of size n0 by n1. The
output of the r2c¢ transform is a two-dimensional complex array of size n0 by n1/2+1, where
the y dimension has been cut nearly in half because of redundancies in the output. Because
fftw_complex is twice the size of double, the output array is slightly bigger than the input
array. Thus, if we want to compute the transform in place, we must pad the input array so
that it is of size n0 by 2x(n1/2+1). If nl is even, then there are two padding elements at
the end of each row (which need not be initialized, as they are only used for output).

Chapter 2: Tutorial 9

ni
0 ni-1

00 1 2 3 n1-4 n1-3 n1-2 n1-1

nl |nt+1) ="

\

input, out-of-place
)

\J

ni/2+1

5
o n0
-
=
[e]
n0-1
|:| = double ‘.. = fftw_complex
n1 +2-n1%2=2*(n1/2+1)
0 n1+1
olo [1 [2 3 n1-4/ n1-3 n1-2
3 nf+2 ni+3 -
)
T
e n0
-
=
[}
=
n0-1

Figure 2.1: Illustration of the data layout for a 2d nx by ny real-to-complex transform.

Figure 2.1 depicts the input and output arrays just described, for both the out-of-place and
in-place transforms (with the arrows indicating consecutive memory locations):

These transforms are unnormalized, so an r2c followed by a c2r transform (or vice versa)
will result in the original data scaled by the number of real data elements—that is, the
product of the (logical) dimensions of the real data.

(Because the last dimension is treated specially, if it is equal to 1 the transform is not equiv-
alent to a lower-dimensional r2c/c2r transform. In that case, the last complex dimension
also has size 1 (=1/2+1), and no advantage is gained over the complex transforms.)

10 FFTW 3.3.10

2.5 More DFTs of Real Data

FEFTW supports several other transform types via a unified r2r (real-to-real) interface, so
called because it takes a real (double) array and outputs a real array of the same size.
These r2r transforms currently fall into three categories: DFTs of real input and complex-
Hermitian output in halfcomplex format, DFTs of real input with even/odd symmetry
(a.k.a. discrete cosine/sine transforms, DCTs/DSTs), and discrete Hartley transforms
(DHTS), all described in more detail by the following sections.

The r2r transforms follow the by now familiar interface of creating an fftw_plan, exe-
cuting it with fftw_execute(plan), and destroying it with fftw_destroy_plan(plan).
Furthermore, all r2r transforms share the same planner interface:

fftw_plan fftw_plan_r2r_1d(int n, double *in, double *out,
fftw_r2r_kind kind, unsigned flags);
fftw_plan fftw_plan_r2r_2d(int nO, int nl, double *in, double *out,
fftw_r2r_kind kindO, fftw_r2r_kind kindl,
unsigned flags);
fftw_plan fftw_plan_r2r_3d(int n0O, int nl, int n2,
double *in, double *out,
fftw_r2r_kind kindO,
fftw_r2r_kind kindil,
fftw_r2r_kind kind2,
unsigned flags);
fftw_plan fftw_plan_r2r(int rank, const int #*n, double *in, double *out,
const fftw_r2r_kind *kind, unsigned flags);

Just as for the complex DFT, these plan 1d/2d/3d/multi-dimensional transforms for con-
tiguous arrays in row-major order, transforming (real) input to output of the same size,
where n specifies the physical dimensions of the arrays. All positive n are supported (with
the exception of n=1 for the FFTW_REDFTO0 kind, noted in the real-even subsection below);
products of small factors are most efficient (factorizing n-1 and n+1 for FFTW_REDFT00 and
FFTW_RODFTOO kinds, described below), but an O(nlogn) algorithm is used even for prime
sizes.

Each dimension has a kind parameter, of type fftw_r2r_kind, specifying the kind of r2r
transform to be used for that dimension. (In the case of fftw_plan_r2r, this is an array
kind[rank] where kind[i] is the transform kind for the dimension n[i].) The kind can
be one of a set of predefined constants, defined in the following subsections.

In other words, FFTW computes the separable product of the specified r2r transforms
over each dimension, which can be used e.g. for partial differential equations with mixed
boundary conditions. (For some r2r kinds, notably the halfcomplex DFT and the DHT,
such a separable product is somewhat problematic in more than one dimension, however,
as is described below.)

In the current version of FFTW, all r2r transforms except for the halfcomplex type are com-
puted via pre- or post-processing of halfcomplex transforms, and they are therefore not as
fast as they could be. Since most other general DCT /DST codes employ a similar algorithm,
however, FFTW’s implementation should provide at least competitive performance.

Chapter 2: Tutorial 11

2.5.1 The Halfcomplex-format DFT

An r2r kind of FFTW_R2HC (r2hc) corresponds to an r2c DFT (see Section 2.3
[One-Dimensional DFTs of Real Data], page 6) but with “halfcomplex” format output,
and may sometimes be faster and/or more convenient than the latter. The inverse hc2r
transform is of kind FFTW_HC2R. This consists of the non-redundant half of the complex
output for a 1d real-input DFT of size n, stored as a sequence of n real numbers (double)
in the format:

To, 715725« - -5 Tn/25 Y(nt1)/2—15 - - -5 22,11

Here, 7, is the real part of the kth output, and 4, is the imaginary part. (Division by 2
is rounded down.) For a halfcomplex array hc[n], the kth component thus has its real
part in hc [k] and its imaginary part in hc [n-k], with the exception of k == 0 or n/2 (the
latter only if n is even)—in these two cases, the imaginary part is zero due to symmetries
of the real-input DFT, and is not stored. Thus, the r2hc transform of n real values is a
halfcomplex array of length n, and vice versa for hc2r.

Aside from the differing format, the output of FFTW_R2HC/FFTW_HC2R is otherwise exactly
the same as for the corresponding 1d r2¢/c2r transform (i.e. FFTW_FORWARD/FFTW_BACKWARD
transforms, respectively). Recall that these transforms are unnormalized, so r2hc followed
by hc2r will result in the original data multiplied by n. Furthermore, like the c2r transform,
an out-of-place hc2r transform will destroy its input array.

Although these halfcomplex transforms can be used with the multi-dimensional r2r interface,
the interpretation of such a separable product of transforms along each dimension is prob-
lematic. For example, consider a two-dimensional n0 by n1, r2hc by r2hc transform planned
by fftw_plan_r2r_2d(n0, nl, in, out, FFTW_R2HC, FFTW_R2HC, FFTW_MEASURE). Con-
ceptually, FFTW first transforms the rows (of size n1) to produce halfcomplex rows, and
then transforms the columns (of size n0). Half of these column transforms, however, are
of imaginary parts, and should therefore be multiplied by ¢ and combined with the r2hc
transforms of the real columns to produce the 2d DFT amplitudes; FFTW’s r2r transform
does not perform this combination for you. Thus, if a multi-dimensional real-input/output
DFT is required, we recommend using the ordinary r2c/c2r interface (see Section 2.4 [Multi-
Dimensional DFTs of Real Datal, page 7).

2.5.2 Real even/odd DFTs (cosine/sine transforms)

The Fourier transform of a real-even function f(—x) = f(z) is real-even, and i times
the Fourier transform of a real-odd function f(—z) = —f(x) is real-odd. Similar results
hold for a discrete Fourier transform, and thus for these symmetries the need for complex
inputs/outputs is entirely eliminated. Moreover, one gains a factor of two in speed/space
from the fact that the data are real, and an additional factor of two from the even/odd
symmetry: only the non-redundant (first) half of the array need be stored. The result is
the real-even DFT (REDFT) and the real-odd DFT (RODF'T), also known as the discrete
cosine and sine transforms (DCT and DST), respectively.

(In this section, we describe the 1d transforms; multi-dimensional transforms are just a
separable product of these transforms operating along each dimension.)

12 FFTW 3.3.10

Because of the discrete sampling, one has an additional choice: is the data even/odd around
a sampling point, or around the point halfway between two samples? The latter corresponds
to shifting the samples by half an interval, and gives rise to several transform variants
denoted by REDFTab and RODFTab: a and b are 0 or 1, and indicate whether the input
(a) and/or output (b) are shifted by half a sample (1 means it is shifted). These are also
known as types I-IV of the DCT and DST, and all four types are supported by FFTW’s
r2r interface.?

The r2r kinds for the various REDFT and RODFT types supported by FFTW, along with
the boundary conditions at both ends of the input array (n real numbers in[j=0..n-11),
are:

e FFTW_REDFTO0 (DCT-I): even around j = 0 and even around j = n — 1.

e FFTW_REDFT10 (DCT-II, “the” DCT): even around j = —0.5 and even around j =
n — 0.5.

e FFTW_REDFTO1 (DCT-III, “the” IDCT): even around j = 0 and odd around j = n.
e FFTW_REDFT11 (DCT-IV): even around j = —0.5 and odd around j = n — 0.5.

e FFTW_RODFTOO (DST-I): odd around j = —1 and odd around j = n.

e FFTW_RODFT10 (DST-II): odd around j = —0.5 and odd around j =n — 0.5.

e FFTW_RODFTO1 (DST-III): odd around j = —1 and even around j =n — 1.

e FFTW_RODFT11 (DST-IV): odd around j = —0.5 and even around j = n — 0.5.

Note that these symmetries apply to the “logical” array being transformed; there are no
constraints on your physical input data. So, for example, if you specify a size-5 REDFTO00
(DCT-I) of the data abede, it corresponds to the DFT of the logical even array abededch of

size 8. A size-4 REDFT10 (DCT-II) of the data abcd corresponds to the size-8 logical DFT
of the even array abcddcba, shifted by half a sample.

All of these transforms are invertible. The inverse of R*DFT00 is R*DFT00; of R*DFT10 is
R*DFTO01 and vice versa (these are often called simply “the” DCT and IDCT, respectively);
and of R*DFT11 is R*DFT11. However, the transforms computed by FFTW are unnor-
malized, exactly like the corresponding real and complex DFTs, so computing a transform
followed by its inverse yields the original array scaled by N, where N is the logical DFT
size. For REDFT00, N = 2(n — 1); for RODFTO00, N = 2(n + 1); otherwise, N = 2n.

Note that the boundary conditions of the transform output array are given by the input
boundary conditions of the inverse transform. Thus, the above transforms are all inequiva-
lent in terms of input/output boundary conditions, even neglecting the 0.5 shift difference.

FFTW is most efficient when N is a product of small factors; note that this differs from the
factorization of the physical size n for REDFT00 and RODFTO00! There is another oddity:
n=1 REDFTO00 transforms correspond to N = 0, and so are not defined (the planner will
return NULL). Otherwise, any positive n is supported.

For the precise mathematical definitions of these transforms as used by FFTW, see
Section 4.8 [What FFTW Really Computes|, page 42. (For people accustomed to the

There are also type V-VIII transforms, which correspond to a logical DFT of odd size N, independent of
whether the physical size n is odd, but we do not support these variants.

Chapter 2: Tutorial 13

DCT/DST, FFTW'’s definitions have a coefficient of 2 in front of the cos/sin functions so
that they correspond precisely to an even/odd DFT of size N. Some authors also include
additional multiplicative factors of /2 for selected inputs and outputs; this makes the
transform orthogonal, but sacrifices the direct equivalence to a symmetric DFT.)

Which type do you need?

Since the required flavor of even/odd DFT depends upon your problem, you are the best
judge of this choice, but we can make a few comments on relative efficiency to help you
in your selection. In particular, R*DFT01 and R*DFT10 tend to be slightly faster than
R*DFT11 (especially for odd sizes), while the R*DFT00 transforms are sometimes signifi-
cantly slower (especially for even sizes).?

Thus, if only the boundary conditions on the transform inputs are specified, we generally
recommend R*DFT10 over R*DFT00 and R*DFT01 over R*DFT11 (unless the half-sample
shift or the self-inverse property is significant for your problem).

If performance is important to you and you are using only small sizes (say n < 200), e.g. for
multi-dimensional transforms, then you might consider generating hard-coded transforms
of those sizes and types that you are interested in (see Section 10.4 [Generating your own
code], page 100).

We are interested in hearing what types of symmetric transforms you find most useful.

2.5.3 The Discrete Hartley Transform

If you are planning to use the DHT because you’ve heard that it is “faster” than the DFT
(FFT), stop here. The DHT is not faster than the DFT. That story is an old but enduring
misconception that was debunked in 1987.

The discrete Hartley transform (DHT) is an invertible linear transform closely related to
the DFT. In the DFT, one multiplies each input by cos — i % sin (a complex exponential),
whereas in the DHT each input is multiplied by simply cos+sin. Thus, the DHT transforms
n real numbers to n real numbers, and has the convenient property of being its own inverse.
In FFTW, a DHT (of any positive n) can be specified by an r2r kind of FFTW_DHT.

Like the DFT, in FFTW the DHT is unnormalized, so computing a DHT of size n followed
by another DHT of the same size will result in the original array multiplied by n.

The DHT was originally proposed as a more efficient alternative to the DFT for real data,
but it was subsequently shown that a specialized DFT (such as FFTW’s r2hc or r2c trans-
forms) could be just as fast. In FFTW, the DHT is actually computed by post-processing
an r2hc transform, so there is ordinarily no reason to prefer it from a performance per-

R*DFTO00 is sometimes slower in FFTW because we discovered that the standard algorithm for computing
this by a pre/post-processed real DFT—the algorithm used in FFTPACK, Numerical Recipes, and other
sources for decades now—has serious numerical problems: it already loses several decimal places of accuracy
for 16k sizes. There seem to be only two alternatives in the literature that do not suffer similarly: a recursive
decomposition into smaller DCTs, which would require a large set of codelets for efficiency and generality,
or sacrificing a factor of ~ 2 in speed to use a real DFT of twice the size. We currently employ the latter
technique for general n, as well as a limited form of the former method: a split-radix decomposition when
n is odd (N a multiple of 4). For N containing many factors of 2, the split-radix method seems to recover
most of the speed of the standard algorithm without the accuracy tradeoff.

14 FFTW 3.3.10

spective.” However, we have heard rumors that the DHT might be the most appropriate
transform in its own right for certain applications, and we would be very interested to hear
from anyone who finds it useful.

If FFTW_DHT is specified for multiple dimensions of a multi-dimensional transform, FFTW
computes the separable product of 1d DHTs along each dimension. Unfortunately, this is
not quite the same thing as a true multi-dimensional DHT; you can compute the latter, if
necessary, with at most rank-1 post-processing passes [see e.g. H. Hao and R. N. Bracewell,
Proc. IEEE 75, 264-266 (1987)].

For the precise mathematical definition of the DHT as used by FFTW, see Section 4.8
[What FEFTW Really Computes|, page 42.

5 We provide the DHT mainly as a byproduct of some internal algorithms. FFTW computes a real in-
put/output DFT of prime size by re-expressing it as a DHT plus post/pre-processing and then using Rader’s
prime-DFT algorithm adapted to the DHT.

15

3 Other Important Topics

3.1 SIMD alignment and fftw_malloc

SIMD, which stands for “Single Instruction Multiple Data,” is a set of special operations
supported by some processors to perform a single operation on several numbers (usually 2 or
4) simultaneously. SIMD floating-point instructions are available on several popular CPUs:
SSE/SSE2/AVX/AVX2/AVX512/KCVI on some x86/x86-64 processors, AltiVec and VSX
on some POWER/PowerPCs, NEON on some ARM models. FFTW can be compiled to
support the SIMD instructions on any of these systems.

A program linking to an FFTW library compiled with SIMD support can obtain a nonneg-
ligible speedup for most complex and r2c/c2r transforms. In order to obtain this speedup,
however, the arrays of complex (or real) data passed to FFTW must be specially aligned in
memory (typically 16-byte aligned), and often this alignment is more stringent than that
provided by the usual malloc (etc.) allocation routines.

In order to guarantee proper alignment for SIMD, therefore, in case your program is ever
linked against a SIMD-using FFTW, we recommend allocating your transform data with
fftw_malloc and de-allocating it with fftw_free. These have exactly the same interface
and behavior as malloc/free, except that for a SIMD FFTW they ensure that the returned
pointer has the necessary alignment (by calling memalign or its equivalent on your OS).

You are not required to use fftw_malloc. You can allocate your data in any way that you
like, from malloc to new (in C++) to a fixed-size array declaration. If the array happens
not to be properly aligned, FFTW will not use the SIMD extensions.

Since fftw_malloc only ever needs to be used for real and complex arrays, we provide two
convenient wrapper routines fftw_alloc_real(N) and fftw_alloc_complex(N) that are
equivalent to (doublex)fftw_malloc(sizeof (double) * N) and (fftw_complex*)fftw_
malloc(sizeof (fftw_complex) * N), respectively (or their equivalents in other precisions).

3.2 Multi-dimensional Array Format

This section describes the format in which multi-dimensional arrays are stored in FFTW.
We felt that a detailed discussion of this topic was necessary. Since several different formats
are common, this topic is often a source of confusion.

3.2.1 Row-major Format

The multi-dimensional arrays passed to fftw_plan_dft etcetera are expected to be stored
as a single contiguous block in row-major order (sometimes called “C order”). Basically,
this means that as you step through adjacent memory locations, the first dimension’s index
varies most slowly and the last dimension’s index varies most quickly.

To be more explicit, let us consider an array of rank d whose dimensions are ng X n; X ng X
-+~ Xng_1 . Now, we specify a location in the array by a sequence of d (zero-based) indices,
one for each dimension: (ig, 1,42, ...,%4_1). If the array is stored in row-major order, then
this element is located at the position iy_1 + 1g_1(ig_2 + ng_2(. .. + n1ip)).

Note that, for the ordinary complex DFT, each element of the array must be of type fftw_
complex; i.e. a (real, imaginary) pair of (double-precision) numbers.

16 FFTW 3.3.10

In the advanced FFTW interface, the physical dimensions n from which the indices are
computed can be different from (larger than) the logical dimensions of the transform to be
computed, in order to transform a subset of a larger array. Note also that, in the advanced
interface, the expression above is multiplied by a stride to get the actual array index—this
is useful in situations where each element of the multi-dimensional array is actually a data
structure (or another array), and you just want to transform a single field. In the basic
interface, however, the stride is 1.

3.2.2 Column-major Format

Readers from the Fortran world are used to arrays stored in column-magjor order (sometimes
called “Fortran order”). This is essentially the exact opposite of row-major order in that,
here, the first dimension’s index varies most quickly.

If you have an array stored in column-major order and wish to transform it using FFTW,
it is quite easy to do. When creating the plan, simply pass the dimensions of the array to
the planner in reverse order. For example, if your array is a rank three N x M x L matrix in
column-major order, you should pass the dimensions of the array as if it were an L x M x N
matrix (which it is, from the perspective of FFTW). This is done for you automatically by
the FFTW legacy-Fortran interface (see Chapter 8 [Calling FFTW from Legacy Fortran],
page 87), but you must do it manually with the modern Fortran interface (see Section 7.2
[Reversing array dimensions|, page 78).

3.2.3 Fixed-size Arrays in C

A multi-dimensional array whose size is declared at compile time in C is already in row-
major order. You don’t have to do anything special to transform it. For example:

{
fftw_complex datal[NO] [N1][N2];
fftw_plan plan;
plan = fftw_plan_dft_3d(NO, N1, N2, &datal[0] [0][0], &datal0] [0][0O],
FFTW_FORWARD, FFTW_ESTIMATE);
}

This will plan a 3d in-place transform of size NO x N1 x N2. Notice how we took the address
of the zero-th element to pass to the planner (we could also have used a typecast).

However, we tend to discourage users from declaring their arrays in this way, for two reasons.
First, this allocates the array on the stack (“automatic” storage), which has a very limited
size on most operating systems (declaring an array with more than a few thousand elements
will often cause a crash). (You can get around this limitation on many systems by declaring
the array as static and/or global, but that has its own drawbacks.) Second, it may not
optimally align the array for use with a SIMD FFTW (see Section 3.1 [SIMD alignment and
fitw_malloc], page 15). Instead, we recommend using fftw_malloc, as described below.

Chapter 3: Other Important Topics 17

3.2.4 Dynamic Arrays in C

We recommend allocating most arrays dynamically, with fftw_malloc. This isn’t too hard
to do, although it is not as straightforward for multi-dimensional arrays as it is for one-
dimensional arrays.

Creating the array is simple: using a dynamic-allocation routine like fftw_malloc, allocate
an array big enough to store N fftw_complex values (for a complex DFT), where N is the
product of the sizes of the array dimensions (i.e. the total number of complex values in the
array). For example, here is code to allocate a 5 x 12 x 27 rank-3 array:

fftw_complex *an_array;
an_array = (fftw_complex*) fftw_malloc(5%12%27 * sizeof (fftw_complex));

Accessing the array elements, however, is more tricky—you can’t simply use multiple ap-
plications of the ‘[]’ operator like you could for fixed-size arrays. Instead, you have to
explicitly compute the offset into the array using the formula given earlier for row-major
arrays. For example, to reference the (i, j, k)-th element of the array allocated above, you
would use the expression an_array[k + 27 * (j + 12 x i)].

This pain can be alleviated somewhat by defining appropriate macros, or, in C++, creating
a class and overloading the ‘()’ operator. The recent C99 standard provides a way to
reinterpret the dynamic array as a “variable-length” multi-dimensional array amenable to
‘[1’, but this feature is not yet widely supported by compilers.

3.2.5 Dynamic Arrays in C—The Wrong Way

A different method for allocating multi-dimensional arrays in C is often suggested that is
incompatible with FFTW: using it will cause FFTW to die a painful death. We discuss the
technique here, however, because it is so commonly known and used. This method is to
create arrays of pointers of arrays of pointers of . . .etcetera. For example, the analogue in
this method to the example above is:

int i,3;

fftw_complex ***a_bad_array; /* another way to make a 5x12x27 array */

a_bad_array = (fftw_complex ***) malloc(5 * sizeof (fftw_complex **));
for (i = 0; i < 5; ++i) {

a_bad_array[i] =

(fftw_complex **) malloc(12 * sizeof (fftw_complex *));
for (j = 0; j < 12; ++j)
a_bad_array[i] [j] =
(fftw_complex *) malloc(27 * sizeof (fftw_complex));

}

As you can see, this sort of array is inconvenient to allocate (and deallocate). On the
other hand, it has the advantage that the (i, j, k)-th element can be referenced simply by
a_bad_array[i] [j] [k].

If you like this technique and want to maximize convenience in accessing the array, but still
want to pass the array to FFTW, you can use a hybrid method. Allocate the array as one
contiguous block, but also declare an array of arrays of pointers that point to appropriate

18 FFTW 3.3.10

places in the block. That sort of trick is beyond the scope of this documentation; for more
information on multi-dimensional arrays in C, see the comp.lang.c FAQ (http://c-faq.
com/aryptr/dynmuldimary.html).

3.3 Words of Wisdom—Saving Plans

FFTW implements a method for saving plans to disk and restoring them. In fact, what
FEFTW does is more general than just saving and loading plans. The mechanism is called
wisdom. Here, we describe this feature at a high level. See Chapter 4 [FFTW Reference],
page 21, for a less casual but more complete discussion of how to use wisdom in FFTW.

Plans created with the FFTW_MEASURE, FFTW_PATIENT, or FFTW_EXHAUSTIVE options produce
near-optimal FFT performance, but may require a long time to compute because FFTW
must measure the runtime of many possible plans and select the best one. This setup is
designed for the situations where so many transforms of the same size must be computed
that the start-up time is irrelevant. For short initialization times, but slower transforms,
we have provided FFTW_ESTIMATE. The wisdom mechanism is a way to get the best of both
worlds: you compute a good plan once, save it to disk, and later reload it as many times as
necessary. The wisdom mechanism can actually save and reload many plans at once, not
just one.

Whenever you create a plan, the FF'TW planner accumulates wisdom, which is information
sufficient to reconstruct the plan. After planning, you can save this information to disk by
means of the function:

int fftw_export_wisdom_to_filename(const char *filename);
(This function returns non-zero on success.)

The next time you run the program, you can restore the wisdom with fftw_import_wisdom_
from_filename (which also returns non-zero on success), and then recreate the plan using
the same flags as before.

int fftw_import_wisdom_from_filename(const char *filename);

Wisdom is automatically used for any size to which it is applicable, as long as the planner
flags are not more “patient” than those with which the wisdom was created. For example,
wisdom created with FFTW_MEASURE can be used if you later plan with FFTW_ESTIMATE or
FFTW_MEASURE, but not with FFTW_PATIENT.

The wisdom is cumulative, and is stored in a global, private data structure managed in-
ternally by FFTW. The storage space required is minimal, proportional to the logarithm
of the sizes the wisdom was generated from. If memory usage is a concern, however, the
wisdom can be forgotten and its associated memory freed by calling:

void fftw_forget_wisdom(void);

Wisdom can be exported to a file, a string, or any other medium. For details, see Section 4.7
[Wisdom], page 40.
3.4 Caveats in Using Wisdom

For in much wisdom is much grief, and he that increaseth knowledge increaseth
sorrow. [Ecclesiastes 1:18]

http://c-faq.com/aryptr/dynmuldimary.html
http://c-faq.com/aryptr/dynmuldimary.html

Chapter 3: Other Important Topics 19

There are pitfalls to using wisdom, in that it can negate FFTW’s ability to adapt to
changing hardware and other conditions. For example, it would be perfectly possible to
export wisdom from a program running on one processor and import it into a program
running on another processor. Doing so, however, would mean that the second program
would use plans optimized for the first processor, instead of the one it is running on.

It should be safe to reuse wisdom as long as the hardware and program binaries remain
unchanged. (Actually, the optimal plan may change even between runs of the same binary
on identical hardware, due to differences in the virtual memory environment, etcetera. Users
seriously interested in performance should worry about this problem, too.) It is likely that,
if the same wisdom is used for two different program binaries, even running on the same
machine, the plans may be sub-optimal because of differing code alignments. It is therefore
wise to recreate wisdom every time an application is recompiled. The more the underlying
hardware and software changes between the creation of wisdom and its use, the greater
grows the risk of sub-optimal plans.

Nevertheless, if the choice is between using FFTW_ESTIMATE or using possibly-suboptimal
wisdom (created on the same machine, but for a different binary), the wisdom is likely
to be better. For this reason, we provide a function to import wisdom from a standard
system-wide location (/etc/fftw/wisdom on Unix):

int fftw_import_system_wisdom(void);

FFTW also provides a standalone program, fftw-wisdom (described by its own man page
on Unix) with which users can create wisdom, e.g. for a canonical set of sizes to store in
the system wisdom file. See Section 4.7.4 [Wisdom Utilities], page 41.

21

4 FFTW Reference

This chapter provides a complete reference for all sequential (i.e., one-processor) FFTW
functions. Parallel transforms are described in later chapters.

4.1 Data Types and Files
All programs using FFTW should include its header file:
#include <fftw3.h>

You must also link to the FFTW library. On Unix, this means adding -1fftw3 -1m at the
end of the link command.

4.1.1 Complex numbers

The default FFTW interface uses double precision for all floating-point numbers, and de-
fines a fftw_complex type to hold complex numbers as:

typedef double fftw_complex[2];
Here, the [0] element holds the real part and the [1] element holds the imaginary part.

Alternatively, if you have a C compiler (such as gcc) that supports the C99 revision of the
ANSI C standard, you can use C’s new native complex type (which is binary-compatible
with the typedef above). In particular, if you #include <complex.h> before <fftw3.h>,
then fftw_complex is defined to be the native complex type and you can manipulate it
with ordinary arithmetic (e.g. x =y * (3+4*I), where x and y are fftw_complex and I is
the standard symbol for the imaginary unit);

C++ has its own complex<T> template class, defined in the standard <complex> header file.
Reportedly, the C++ standards committee has recently agreed to mandate that the storage
format used for this type be binary-compatible with the C99 type, i.e. an array T[2] with
consecutive real [0] and imaginary [1] parts. (See report http://www.open-std.org/
jtcl/sc22/WG21/docs/papers/2002/n1388.pdf WG21/N1388.) Although not part of the
official standard as of this writing, the proposal stated that: “This solution has been tested
with all current major implementations of the standard library and shown to be working.”
To the extent that this is true, if you have a variable complex<double> *x, you can pass it
directly to FF'TW via reinterpret_cast<fftw_complex*>(x).

4.1.2 Precision

You can install single and long-double precision versions of FFTW, which replace double
with float and long double, respectively (see Chapter 10 [Installation and Customization],
page 97). To use these interfaces, you:

e Link to the single/long-double libraries; on Unix, -1fftw3f or -1fftw31 instead of (or
in addition to) -1fftw3. (You can link to the different-precision libraries simultane-
ously.)

e Include the same <fftw3.h> header file.

e Replace all lowercase instances of ‘fftw_’ with ‘fftwf_’ or ‘fftwl_’ for single or
long-double precision, respectively. (fftw_complex becomes fftwf_complex, fftw_
execute becomes fftwf_execute, etcetera.)

http://www.open-std.org/jtc1/sc22/WG21/docs/papers/2002/n1388.pdf WG21/N1388
http://www.open-std.org/jtc1/sc22/WG21/docs/papers/2002/n1388.pdf WG21/N1388

22 FFTW 3.3.10

e Uppercase names, i.e. names beginning with ‘FFTW_’, remain the same.

e Replace double with float or long double for subroutine parameters.

Depending upon your compiler and/or hardware, long double may not be any more precise
than double (or may not be supported at all, although it is standard in C99).

We also support using the nonstandard __float128 quadruple-precision type provided by
recent versions of gcc on 32- and 64-bit x86 hardware (see Chapter 10 [Installation and
Customization], page 97). To use this type, link with -1fftw3q -1quadmath -1m (the
libquadmath library provided by gcc is needed for quadruple-precision trigonometric func-
tions) and use ‘fftwq_’ identifiers.

4.1.3 Memory Allocation

void *fftw_malloc(size_t n);
void fftw_free(void *p);

These are functions that behave identically to malloc and free, except that they guarantee
that the returned pointer obeys any special alignment restrictions imposed by any algorithm
in FFTW (e.g. for SIMD acceleration). See Section 3.1 [SIMD alignment and fftw_malloc],
page 15.

Data allocated by fftw_malloc must be deallocated by fftw_free and not by the ordinary
free.

These routines simply call through to your operating system’s malloc or, if necessary, its
aligned equivalent (e.g. memalign), so you normally need not worry about any significant
time or space overhead. You are not required to use them to allocate your data, but we
strongly recommend it.

Note: in C++, just as with ordinary malloc, you must typecast the output of fftw_malloc
to whatever pointer type you are allocating.

We also provide the following two convenience functions to allocate real and complex arrays
with n elements, which are equivalent to (double *) fftw_malloc(sizeof (double) * n)
and (fftw_complex *) fftw_malloc(sizeof (fftw_complex) * n), respectively:

double *fftw_alloc_real(size_t n);
fftw_complex *fftw_alloc_complex(size_t n);

The equivalent functions in other precisions allocate arrays of n elements in that precision.
e.g. fftwf_alloc_real(n) is equivalent to (float *) fftwf_malloc(sizeof (float) *
n).

4.2 Using Plans

Plans for all transform types in FFTW are stored as type fftw_plan (an opaque pointer
type), and are created by one of the various planning routines described in the follow-
ing sections. An fftw_plan contains all information necessary to compute the transform,
including the pointers to the input and output arrays.

void fftw_execute(const fftw_plan plan);

Chapter 4: FFTW Reference 23

This executes the plan, to compute the corresponding transform on the arrays for which it
was planned (which must still exist). The plan is not modified, and fftw_execute can be
called as many times as desired.

To apply a given plan to a different array, you can use the new-array execute interface. See
Section 4.6 [New-array Execute Functions], page 38.

fftw_execute (and equivalents) is the only function in FFTW guaranteed to be thread-safe;
see Section 5.4 [Thread safety], page 51.

This function:
void fftw_destroy_plan(fftw_plan plan);
deallocates the plan and all its associated data.

FFTW’s planner saves some other persistent data, such as the accumulated wisdom and
a list of algorithms available in the current configuration. If you want to deallocate all of
that and reset FFTW to the pristine state it was in when you started your program, you
can call:

void fftw_cleanup(void);

After calling fftw_cleanup, all existing plans become undefined, and you should not at-
tempt to execute them nor to destroy them. You can however create and execute/destroy
new plans, in which case FF'TW starts accumulating wisdom information again.

fftw_cleanup does not deallocate your plans, however. To prevent memory leaks, you
must still call fftw_destroy_plan before executing fftw_cleanup.

Occasionally, it may useful to know FFTW’s internal “cost” metric that it uses to com-
pare plans to one another; this cost is proportional to an execution time of the plan, in
undocumented units, if the plan was created with the FFTW_MEASURE or other timing-based
options, or alternatively is a heuristic cost function for FFTW_ESTIMATE plans. (The cost
values of measured and estimated plans are not comparable, being in different units. Also,
costs from different FFTW versions or the same version compiled differently may not be in
the same units. Plans created from wisdom have a cost of 0 since no timing measurement
is performed for them. Finally, certain problems for which only one top-level algorithm was
possible may have required no measurements of the cost of the whole plan, in which case
fftw_cost will also return 0.) The cost metric for a given plan is returned by:

double fftw_cost(const fftw_plan plan);

The following two routines are provided purely for academic purposes (that is, for enter-
tainment).

void fftw_flops(const fftw_plan plan,
double *add, double *mul, double *fma);

Given a plan, set add, mul, and fma to an exact count of the number of floating-point addi-
tions, multiplications, and fused multiply-add operations involved in the plan’s execution.
The total number of floating-point operations (flops) is add + mul + 2*fma, or add + mul +
fma if the hardware supports fused multiply-add instructions (although the number of FMA
operations is only approximate because of compiler voodoo). (The number of operations

24 FFTW 3.3.10

should be an integer, but we use double to avoid overflowing int for large transforms; the
arguments are of type double even for single and long-double precision versions of FEFTW.)

void fftw_fprint_plan(const fftw_plan plan, FILE *output_file);
void fftw_print_plan(const fftw_plan plan);
char *fftw_sprint_plan(const fftw_plan plan);

This outputs a “nerd-readable” representation of the plan to the given file, to stdout, or
two a newly allocated NUL-terminated string (which the caller is responsible for deallocating
with free), respectively.

4.3 Basic Interface

Recall that the FFTW API is divided into three parts': the basic interface computes a single
transform of contiguous data, the advanced interface computes transforms of multiple or
strided arrays, and the guru interface supports the most general data layouts, multiplicities,
and strides. This section describes the basic interface, which we expect to satisfy the needs
of most users.

4.3.1 Complex DFTs

fftw_plan fftw_plan_dft_1d(int noO,
fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);
fftw_plan fftw_plan_dft_2d(int nO, int nil,
fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);
fftw_plan fftw_plan_dft_3d(int nO, int nl, int n2,
fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);
fftw_plan fftw_plan_dft(int rank, const int *n,
fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

Plan a complex input/output discrete Fourier transform (DFT) in zero or more dimensions,
returning an fftw_plan (see Section 4.2 [Using Plans]|, page 22).

Once you have created a plan for a certain transform type and parameters, then creating
another plan of the same type and parameters, but for different arrays, is fast and shares
constant data with the first plan (if it still exists).

The planner returns NULL if the plan cannot be created. In the standard FFTW distribution,
the basic interface is guaranteed to return a non-NULL plan. A plan may be NULL, however,
if you are using a customized FFTW configuration supporting a restricted set of transforms.

Arguments

e rank is the rank of the transform (it should be the size of the array *n), and can be any
non-negative integer. (See Section 2.2 [Complex Multi-Dimensional DFTs|, page 5, for
the definition of “rank”.) The ‘_1d’, ‘_2d’, and ‘_3d’ planners correspond to a rank

L Gallia est omnis divisa in partes tres (Julius Caesar).

Chapter 4: FFTW Reference 25

of 1, 2, and 3, respectively. The rank may be zero, which is equivalent to a rank-1
transform of size 1, i.e. a copy of one number from input to output.

e 10, nl, n2, or n[0..rank-1] (as appropriate for each routine) specify the size of the
transform dimensions. They can be any positive integer.

— Multi-dimensional arrays are stored in row-major order with dimensions: n0O x
nl; or n0 x n1 x n2; or n[0] x n[1] x ... x n[rank-1]. See Section 3.2 [Multi-
dimensional Array Format], page 15.

— FFTW is best at handling sizes of the form 2¢3°5°7911°13/, where e+ f is either 0
or 1, and the other exponents are arbitrary. Other sizes are computed by means of
a slow, general-purpose algorithm (which nevertheless retains O(nlogn) perfor-
mance even for prime sizes). It is possible to customize FFTW for different array
sizes; see Chapter 10 [Installation and Customization|, page 97. Transforms whose
sizes are powers of 2 are especially fast.

e in and out point to the input and output arrays of the transform, which may be the
same (yielding an in-place transform). These arrays are overwritten during planning,
unless FFTW_ESTIMATE is used in the flags. (The arrays need not be initialized, but
they must be allocated.)

If in == out, the transform is in-place and the input array is overwritten. If in != out,
the two arrays must not overlap (but FFTW does not check for this condition).

e sign is the sign of the exponent in the formula that defines the Fourier transform. It
can be —1 (= FFTW_FORWARD) or +1 (= FFTW_BACKWARD).

e flags is a bitwise OR (‘|”) of zero or more planner flags, as defined in Section 4.3.2
[Planner Flags|, page 25.

FFTW computes an unnormalized transform: computing a forward followed by a backward
transform (or vice versa) will result in the original data multiplied by the size of the trans-
form (the product of the dimensions). For more information, see Section 4.8 [What FFTW
Really Computes], page 42.

4.3.2 Planner Flags

All of the planner routines in FFTW accept an integer flags argument, which is a bitwise
OR (‘1”) of zero or more of the flag constants defined below. These flags control the rigor
(and time) of the planning process, and can also impose (or lift) restrictions on the type of
transform algorithm that is employed.

Important: the planner overwrites the input array during planning unless a saved plan (see
Section 4.7 [Wisdom], page 40) is available for that problem, so you should initialize your
input data after creating the plan. The only exceptions to this are the FFTW_ESTIMATE and
FFTW_WISDOM_ONLY flags, as mentioned below.

In all cases, if wisdom is available for the given problem that was created with equal-or-
greater planning rigor, then the more rigorous wisdom is used. For example, in FFTW_
ESTIMATE mode any available wisdom is used, whereas in FFTW_PATIENT mode only wisdom
created in patient or exhaustive mode can be used. See Section 3.3 [Words of Wisdom-
Saving Plans], page 18.

26

FFTW 3.3.10

Planning-rigor flags

FFTW_ESTIMATE specifies that, instead of actual measurements of different algorithms,
a simple heuristic is used to pick a (probably sub-optimal) plan quickly. With this flag,
the input/output arrays are not overwritten during planning.

FFTW_MEASURE tells FFTW to find an optimized plan by actually computing several
FFTs and measuring their execution time. Depending on your machine, this can take
some time (often a few seconds). FFTW_MEASURE is the default planning option.

FFTW_PATIENT is like FFTW_MEASURE, but considers a wider range of algorithms and
often produces a “more optimal” plan (especially for large transforms), but at the
expense of several times longer planning time (especially for large transforms).

FFTW_EXHAUSTIVE is like FFTW_PATIENT, but considers an even wider range of algo-
rithms, including many that we think are unlikely to be fast, to produce the most
optimal plan but with a substantially increased planning time.

FFTW_WISDOM_ONLY is a special planning mode in which the plan is only created if
wisdom is available for the given problem, and otherwise a NULL plan is returned. This
can be combined with other flags, e.g. ‘FFTW_WISDOM_ONLY | FFTW_PATIENT creates a
plan only if wisdom is available that was created in FFTW_PATIENT or FFTW_EXHAUSTIVE
mode. The FFTW_WISDOM_ONLY flag is intended for users who need to detect whether
wisdom is available; for example, if wisdom is not available one may wish to allocate
new arrays for planning so that user data is not overwritten.

Algorithm-restriction flags

FFTW_DESTROY_INPUT specifies that an out-of-place transform is allowed to overwrite
its input array with arbitrary data; this can sometimes allow more efficient algorithms
to be employed.

FFTW_PRESERVE_INPUT specifies that an out-of-place transform must not change its
input array. This is ordinarily the default, except for ¢2r and he2r (i.e. complex-to-real)
transforms for which FFTW_DESTROY_INPUT is the default. In the latter cases, passing
FFTW_PRESERVE_INPUT will attempt to use algorithms that do not destroy the input,
at the expense of worse performance; for multi-dimensional c2r transforms, however,
no input-preserving algorithms are implemented and the planner will return NULL if
one is requested.

FFTW_UNALIGNED specifies that the algorithm may not impose any unusual alignment
requirements on the input/output arrays (i.e. no SIMD may be used). This flag is
normally not necessary, since the planner automatically detects misaligned arrays. The
only use for this flag is if you want to use the new-array execute interface to execute a
given plan on a different array that may not be aligned like the original. (Using fftw_
malloc makes this flag unnecessary even then. You can also use fftw_alignment_of
to detect whether two arrays are equivalently aligned.)

Limiting planning time

extern void fftw_set_timelimit(double seconds);

This function instructs FFTW to spend at most seconds seconds (approximately) in the
planner. If seconds == FFTW_NO_TIMELIMIT (the default value, which is negative), then
planning time is unbounded. Otherwise, FF'TW plans with a progressively wider range of

Chapter 4: FFTW Reference 27

algorithms until the given time limit is reached or the given range of algorithms is explored,
returning the best available plan.

For example, specifying FFTW_PATIENT first plans in FFTW_ESTIMATE mode, then in FFTW_
MEASURE mode, then finally (time permitting) in FFTW_PATIENT. If FFTW_EXHAUSTIVE is
specified instead, the planner will further progress to FFTW_EXHAUSTIVE mode.

Note that the seconds argument specifies only a rough limit; in practice, the planner may
use somewhat more time if the time limit is reached when the planner is in the middle of an
operation that cannot be interrupted. At the very least, the planner will complete planning
in FFTW_ESTIMATE mode (which is thus equivalent to a time limit of 0).

4.3.3 Real-data DFTs

fftw_plan fftw_plan_dft_r2c_1d(int nO,
double *in, fftw_complex *out,
unsigned flags);
fftw_plan fftw_plan_dft_r2c_2d(int n0O, int nil,
double *in, fftw_complex *out,
unsigned flags);
fftw_plan fftw_plan_dft_r2c_3d(int nO, int nl, int n2,
double *in, fftw_complex *out,
unsigned flags);
fftw_plan fftw_plan_dft_r2c(int rank, const int *n,
double *in, fftw_complex *out,
unsigned flags);

Plan a real-input/complex-output discrete Fourier transform (DFT) in zero or more dimen-
sions, returning an fftw_plan (see Section 4.2 [Using Plans], page 22).

Once you have created a plan for a certain transform type and parameters, then creating
another plan of the same type and parameters, but for different arrays, is fast and shares
constant data with the first plan (if it still exists).

The planner returns NULL if the plan cannot be created. A non-NULL plan is always returned
by the basic interface unless you are using a customized FFTW configuration supporting
a restricted set of transforms, or if you use the FFTW_PRESERVE_INPUT flag with a multi-
dimensional out-of-place c2r transform (see below).

Arguments

e rank is the rank of the transform (it should be the size of the array *n), and can be any
non-negative integer. (See Section 2.2 [Complex Multi-Dimensional DFTs], page 5, for
the definition of “rank”.) The ‘_1d’, ‘_2d’, and ‘_3d’ planners correspond to a rank
of 1, 2, and 3, respectively. The rank may be zero, which is equivalent to a rank-1
transform of size 1, i.e. a copy of one real number (with zero imaginary part) from
input to output.

e n0, n1, n2, or n[0..rank-1], (as appropriate for each routine) specify the size of the
transform dimensions. They can be any positive integer. This is different in general
from the physical array dimensions, which are described in Section 4.3.4 [Real-data
DFT Array Format], page 28.

28 FFTW 3.3.10

— FFTW is best at handling sizes of the form 293°5°7?11¢13/, where e + f is either
0 or 1, and the other exponents are arbitrary. Other sizes are computed by means
of a slow, general-purpose algorithm (which nevertheless retains O(nlogn) per-
formance even for prime sizes). (It is possible to customize FFTW for different
array sizes; see Chapter 10 [Installation and Customization], page 97.) Transforms
whose sizes are powers of 2 are especially fast, and it is generally beneficial for the
last dimension of an r2¢/c2r transform to be even.

e in and out point to the input and output arrays of the transform, which may be the
same (yielding an in-place transform). These arrays are overwritten during planning,
unless FFTW_ESTIMATE is used in the flags. (The arrays need not be initialized, but
they must be allocated.) For an in-place transform, it is important to remember that
the real array will require padding, described in Section 4.3.4 [Real-data DFT Array
Format], page 28.

e flags is a bitwise OR (‘|’) of zero or more planner flags, as defined in Section 4.3.2
[Planner Flags|, page 25.

The inverse transforms, taking complex input (storing the non-redundant half of a logically
Hermitian array) to real output, are given by:

fftw_plan fftw_plan_dft_c2r_1d(int nO,
fftw_complex *in, double *out,
unsigned flags);
fftw_plan fftw_plan_dft_c2r_2d(int n0O, int nil,
fftw_complex *in, double *out,
unsigned flags);
fftw_plan fftw_plan_dft_c2r_3d(int nO, int nl, int n2,
fftw_complex *in, double *out,
unsigned flags);
fftw_plan fftw_plan_dft_c2r(int rank, const int *n,
fftw_complex *in, double *out,
unsigned flags);

The arguments are the same as for the r2c transforms, except that the input and output
data formats are reversed.

FFTW computes an unnormalized transform: computing an r2c followed by a c2r transform
(or vice versa) will result in the original data multiplied by the size of the transform (the
product of the logical dimensions). An r2c transform produces the same output as a FFTW_
FORWARD complex DF'T of the same input, and a c2r transform is correspondingly equivalent
to FFTW_BACKWARD. For more information, see Section 4.8 [What FFTW Really Computes],
page 42.

4.3.4 Real-data DFT Array Format

The output of a DFT of real data (r2c) contains symmetries that, in principle, make half of
the outputs redundant (see Section 4.8 [What FFTW Really Computes|, page 42). (Sim-
ilarly for the input of an inverse c2r transform.) In practice, it is not possible to entirely
realize these savings in an efficient and understandable format that generalizes to multi-
dimensional transforms. Instead, the output of the r2c transforms is slightly over half of

Chapter 4: FFTW Reference 29

the output of the corresponding complex transform. We do not “pack” the data in any
way, but store it as an ordinary array of fftw_complex values. In fact, this data is simply
a subsection of what would be the array in the corresponding complex transform.

Specifically, for a real transform of d (= rank) dimensions ng X ny X ng X -+- X ng_y , the
complex data is an ng X ny X ng X -+ X (ng_1/2 + 1) array of fftw_complex values in
row-major order (with the division rounded down). That is, we only store the lower half
(non-negative frequencies), plus one element, of the last dimension of the data from the
ordinary complex transform. (We could have instead taken half of any other dimension,
but implementation turns out to be simpler if the last, contiguous, dimension is used.)

For an out-of-place transform, the real data is simply an array with physical dimensions
g X Ny X Ng X -+ X Ng_y in row-major order.

For an in-place transform, some complications arise since the complex data is slightly larger
than the real data. In this case, the final dimension of the real data must be padded with
extra values to accommodate the size of the complex data—two extra if the last dimension
is even and one if it is odd. That is, the last dimension of the real data must physically
contain 2(ngy_1/2 + 1) double values (exactly enough to hold the complex data). This
physical array size does not, however, change the logical array size—only ny_; values are
actually stored in the last dimension, and n,_; is the last dimension passed to the planner.

4.3.5 Real-to-Real Transforms

fftw_plan fftw_plan_r2r_1d(int n, double *in, double *out,
fftw_r2r_kind kind, unsigned flags);
fftw_plan fftw_plan_r2r_2d(int nO, int nl, double *in, double *out,
fftw_r2r_kind kindO, fftw_r2r_kind kindil,
unsigned flags);
fftw_plan fftw_plan_r2r_3d(int n0O, int nl, int n2,
double *in, double *out,
fftw_r2r_kind kindO,
fftw_r2r_kind kindil,
fftw_r2r_kind kind2,
unsigned flags);
fftw_plan fftw_plan_r2r(int rank, const int #*n, double *in, double *out,
const fftw_r2r_kind *kind, unsigned flags);

Plan a real input/output (r2r) transform of various kinds in zero or more dimensions,
returning an fftw_plan (see Section 4.2 [Using Plans|, page 22).

Once you have created a plan for a certain transform type and parameters, then creating
another plan of the same type and parameters, but for different arrays, is fast and shares
constant data with the first plan (if it still exists).

The planner returns NULL if the plan cannot be created. A non-NULL plan is always returned
by the basic interface unless you are using a customized FFTW configuration supporting a
restricted set of transforms, or for size-1 FFTW_REDFTOO kinds (which are not defined).

Arguments

e rank is the dimensionality of the transform (it should be the size of the arrays *n and
*kind), and can be any non-negative integer. The ‘_1d’, ‘_2d’, and ‘_3d’ planners

30

FFTW 3.3.10

correspond to a rank of 1, 2, and 3, respectively. A rank of zero is equivalent to a copy
of one number from input to output.

n, or n0/n1/n2, or nlrank], respectively, gives the (physical) size of the transform
dimensions. They can be any positive integer.

— Multi-dimensional arrays are stored in row-major order with dimensions: n0 x
ni; or n0 x n1 x n2; or n[0] x n[1] x ... x n[rank-1]. See Section 3.2 [Multi-
dimensional Array Format], page 15.

— FFTW is generally best at handling sizes of the form 2¢3°5°7911¢13/, where e+ f is
either 0 or 1, and the other exponents are arbitrary. Other sizes are computed by
means of a slow, general-purpose algorithm (which nevertheless retains O(nlogn)
performance even for prime sizes). (It is possible to customize FFTW for different
array sizes; see Chapter 10 [Installation and Customization], page 97.) Transforms
whose sizes are powers of 2 are especially fast.

— For a REDFTOO or RODFTOO transform kind in a dimension of size n, it is n — 1 or
n + 1, respectively, that should be factorizable in the above form.

in and out point to the input and output arrays of the transform, which may be the
same (yielding an in-place transform). These arrays are overwritten during planning,
unless FFTW_ESTIMATE is used in the flags. (The arrays need not be initialized, but
they must be allocated.)

kind, or kind0/kind1/kind2, or kind[rank], is the kind of r2r transform used for
the corresponding dimension. The valid kind constants are described in Section 4.3.6
[Real-to-Real Transform Kinds], page 30. In a multi-dimensional transform, what is
computed is the separable product formed by taking each transform kind along the
corresponding dimension, one dimension after another.

flags is a bitwise OR (‘1’) of zero or more planner flags, as defined in Section 4.3.2
[Planner Flags], page 25.

4.3.6 Real-to-Real Transform Kinds

FFTW currently supports 11 different r2r transform kinds, specified by one of the constants
below. For the precise definitions of these transforms, see Section 4.8 [What FFTW Really
Computes|, page 42. For a more colloquial introduction to these transform kinds, see
Section 2.5 [More DFTs of Real Datal, page 10.

For dimension of size n, there is a corresponding “logical” dimension N that determines the
normalization (and the optimal factorization); the formula for N is given for each kind below.
Also, with each transform kind is listed its corrsponding inverse transform. FFTW computes
unnormalized transforms: a transform followed by its inverse will result in the original data
multiplied by N (or the product of the N’s for each dimension, in multi-dimensions).

e FFTW_R2HC computes a real-input DFT with output in “halfcomplex” format, i.e. real

and imaginary parts for a transform of size n stored as:

TosT1,72, - -+, Tn/2, Un+1)/2—15 - -5 12, 11

(Logical N=n, inverse is FFTW_HC2R.)

e FFTW_HC2R computes the reverse of FFTW_R2HC, above. (Logical N=n, inverse is FFTW_

R2HC.)

Chapter 4: FFTW Reference 31

e FFTW_DHT computes a discrete Hartley transform. (Logical N=n, inverse is FFTW_DHT.)

e FFTW_REDFTOO computes an REDFTO00 transform, i.e. a DCT-I. (Logical N=2*(n-1),
inverse is FFTW_REDFTO0.)

e FFTW_REDFT10 computes an REDFT10 transform, i.e. a DCT-II (sometimes called
“the” DCT). (Logical N=2*n, inverse is FFTW_REDFTO1.)

e FFTW_REDFTO1 computes an REDFTO1 transform, i.e. a DCT-III (sometimes called
“the” IDCT, being the inverse of DCT-II). (Logical N=2*n, inverse is FFTW_REDFT=10.)

e FFTW_REDFT11 computes an REDFTI11 transform, i.e. a DCT-IV. (Logical N=2#n,
inverse is FFTW_REDFT11.)

e FFTW_RODFTOO computes an RODFTO0O0 transform, i.e. a DST-I. (Logical N=2*(n+1),
inverse is FFTW_RODFTOO.)

e FFTW_RODFT10 computes an RODFT10 transform, i.e. a DST-II. (Logical N=2#n, in-
verse is FFTW_RODFTO1.)

e FFTW_RODFTO1 computes an RODFTO1 transform, i.e. a DST-III. (Logical N=2*n, in-
verse is FFTW_RODFT=10.)

e FFTW_RODFT11 computes an RODFT11 transform, i.e. a DST-IV. (Logical N=2*n, in-
verse is FFTW_RODFT11.)

4.4 Advanced Interface

FFTW’s “advanced” interface supplements the basic interface with four new planner rou-
tines, providing a new level of flexibility: you can plan a transform of multiple arrays si-
multaneously, operate on non-contiguous (strided) data, and transform a subset of a larger
multi-dimensional array. Other than these additional features, the planner operates in the
same fashion as in the basic interface, and the resulting fftw_plan is used in the same way
(see Section 4.2 [Using Plans], page 22).

4.4.1 Advanced Complex DFTs

fftw_plan fftw_plan_many_dft(int rank, const int *n, int howmany,
fftw_complex *in, const int *inembed,
int istride, int idist,
fftw_complex *out, const int *onembed,
int ostride, int odist,
int sign, unsigned flags);

This routine plans multiple multidimensional complex DFTs, and it extends the fftw_plan_
dft routine (see Section 4.3.1 [Complex DFTs|, page 24) to compute howmany transforms,
each having rank rank and size n. In addition, the transform data need not be contiguous,
but it may be laid out in memory with an arbitrary stride. To account for these possibilities,
fftw_plan_many_dft adds the new parameters howmany, {i,0}nembed, {i,o}stride, and
{i,0}dist. The FFTW basic interface (see Section 4.3.1 [Complex DFTs], page 24) provides
routines specialized for ranks 1, 2, and 3, but the advanced interface handles only the
general-rank case.

howmany is the (nonnegative) number of transforms to compute. The resulting plan com-
putes howmany transforms, where the input of the k-th transform is at location in+k*idist

32 FFTW 3.3.10

(in C pointer arithmetic), and its output is at location out+k*odist. Plans obtained in
this way can often be faster than calling FFTW multiple times for the individual trans-
forms. The basic fftw_plan_dft interface corresponds to howmany=1 (in which case the
dist parameters are ignored).

Fach of the howmany transforms has rank rank and size n, as in the basic interface. In
addition, the advanced interface allows the input and output arrays of each transform to
be row-major subarrays of larger rank-rank arrays, described by inembed and onembed
parameters, respectively. {i,o}nembed must be arrays of length rank, and n should be
elementwise less than or equal to {i,o}nembed. Passing NULL for an nembed parameter is
equivalent to passing n (i.e. same physical and logical dimensions, as in the basic interface.)

The stride parameters indicate that the j-th element of the input or output arrays is
located at j*istride or j*ostride, respectively. (For a multi-dimensional array, j is the
ordinary row-major index.) When combined with the k-th transform in a howmany loop,
from above, this means that the (j,k)-th element is at j*stride+k*dist. (The basic fftw_
plan_dft interface corresponds to a stride of 1.)

For in-place transforms, the input and output stride and dist parameters should be the
same; otherwise, the planner may return NULL.

Arrays n, inembed, and onembed are not used after this function returns. You can safely
free or reuse them.

Examples: One transform of one 5 by 6 array contiguous in memory:

int rank = 2;

int n[] = {5, 6};

int howmany = 1;

int idist = odist = 0; /* unused because howmany = 1 */

int istride = ostride = 1; /* array is contiguous in memory */
int *inembed = n, *onembed = n;

Transform of three 5 by 6 arrays, each contiguous in memory, stored in memory one after
another:

int rank = 2;
int n[] = {5, 6};
int howmany = 3;
int idist = odist = n[0]l*n[1]; /* = 30, the distance in memory
between the first element
of the first array and the
first element of the second array */
int istride = ostride = 1; /* array is contiguous in memory */
int *inembed = n, *onembed = n;

Transform each column of a 2d array with 10 rows and 3 columns:

int rank = 1; /* not 2: we are computing 1d transforms */
int n[] = {10}; /* 1d transforms of length 10 */

int howmany = 3;

int idist = odist = 1;

Chapter 4: FFTW Reference 33

int istride = ostride = 3; /* distance between two elements in
the same column */
int *inembed = n, *onembed = n;

4.4.2 Advanced Real-data DFTs

fftw_plan fftw_plan_many_dft_r2c(int rank, const int *n, int howmany,
double *in, const int *inembed,
int istride, int idist,
fftw_complex *out, const int *onembed,
int ostride, int odist,
unsigned flags);

fftw_plan fftw_plan_many_dft_c2r(int rank, const int *n, int howmany,
fftw_complex *in, const int *inembed,
int istride, int idist,
double *out, const int *onembed,
int ostride, int odist,
unsigned flags);

Like fftw_plan_many_dft, these two functions add howmany, nembed, stride, and dist
parameters to the fftw_plan_dft_r2c and fftw_plan_dft_c2r functions, but otherwise
behave the same as the basic interface.

The interpretation of howmany, stride, and dist are the same as for fftw_plan_many_dft,
above. Note that the stride and dist for the real array are in units of double, and for
the complex array are in units of fftw_complex.

If an nembed parameter is NULL, it is interpreted as what it would be in the basic interface, as
described in Section 4.3.4 [Real-data DFT Array Format], page 28. That is, for the complex
array the size is assumed to be the same as n, but with the last dimension cut roughly in
half. For the real array, the size is assumed to be n if the transform is out-of-place, or n
with the last dimension “padded” if the transform is in-place.

If an nembed parameter is non-NULL, it is interpreted as the physical size of the corresponding
array, in row-major order, just as for fftw_plan_many_dft. In this case, each dimension of
nembed should be >= what it would be in the basic interface (e.g. the halved or padded n).

Arrays n, inembed, and onembed are not used after this function returns. You can safely
free or reuse them.

4.4.3 Advanced Real-to-real Transforms

fftw_plan fftw_plan_many_r2r(int rank, const int *n, int howmany,
double *in, const int *inembed,
int istride, int idist,
double *out, const int *onembed,
int ostride, int odist,
const fftw_r2r_kind *kind, unsigned flags);

Like fftw_plan_many_dft, this functions adds howmany, nembed, stride, and dist param-
eters to the fftw_plan_r2r function, but otherwise behave the same as the basic interface.

34 FFTW 3.3.10

The interpretation of those additional parameters are the same as for fftw_plan_many_dft.
(Of course, the stride and dist parameters are now in units of double, not fftw_complex.)

Arrays n, inembed, onembed, and kind are not used after this function returns. You can
safely free or reuse them.

4.5 Guru Interface

The “guru” interface to FFTW is intended to expose as much as possible of the flexibility in
the underlying FFTW architecture. It allows one to compute multi-dimensional “vectors”
(loops) of multi-dimensional transforms, where each vector/transform dimension has an
independent size and stride. One can also use more general complex-number formats, e.g.
separate real and imaginary arrays.

For those users who require the flexibility of the guru interface, it is important that they
pay special attention to the documentation lest they shoot themselves in the foot.

4.5.1 Interleaved and split arrays

The guru interface supports two representations of complex numbers, which we call the
interleaved and the split format.

The interleaved format is the same one used by the basic and advanced interfaces, and it
is documented in Section 4.1.1 [Complex numbers|, page 21. In the interleaved format, you
provide pointers to the real part of a complex number, and the imaginary part understood
to be stored in the next memory location.

The split format allows separate pointers to the real and imaginary parts of a complex
array.

Technically, the interleaved format is redundant, because you can always express an inter-
leaved array in terms of a split array with appropriate pointers and strides. On the other
hand, the interleaved format is simpler to use, and it is common in practice. Hence, FFTW
supports it as a special case.

4.5.2 Guru vector and transform sizes

The guru interface introduces one basic new data structure, fftw_iodim, that is used to
specify sizes and strides for multi-dimensional transforms and vectors:

typedef struct {
int n;
int is;
int os;

} fftw_iodim;

Here, n is the size of the dimension, and is and os are the strides of that dimension for the
input and output arrays. (The stride is the separation of consecutive elements along this
dimension.)

The meaning of the stride parameter depends on the type of the array that the stride refers
to. If the array is interleaved complex, strides are expressed in units of complexr numbers
(fftw_complex). If the array is split complex or real, strides are expressed in units of real

Chapter 4: FFTW Reference 35

numbers (double). This convention is consistent with the usual pointer arithmetic in the
C language. An interleaved array is denoted by a pointer p to fftw_complex, so that p+1
points to the next complex number. Split arrays are denoted by pointers to double, in
which case pointer arithmetic operates in units of sizeof (double).

The guru planner interfaces all take a (rank, dims[rank]) pair describing the transform
size, and a (howmany_rank, howmany_dims [howmany_rank]) pair describing the “vector”
size (a multi-dimensional loop of transforms to perform), where dims and howmany_dims
are arrays of fftw_iodim. Each n field must be positive for dims and nonnegative for
howmany_dims, while both rank and howmany_rank must be nonnegative.

For example, the howmany parameter in the advanced complex-DFT interface corresponds
to howmany_rank = 1, howmany_dims[0] .n = howmany, howmany_dims[0] .is = idist,
and howmany_dims[0].os = odist. (To compute a single transform, you can just use
howmany_rank = 0.)

A row-major multidimensional array with dimensions n[rank] (see Section 3.2.1 [Row-
major Format|, page 15) corresponds to dims[i] .n = n[i] and the recurrence dims[i] .is
=n[i+1] * dims[i+1].is (similarly for os). The stride of the last (i=rank-1) dimension is
the overall stride of the array. e.g. to be equivalent to the advanced complex-DFT interface,
you would have dims[rank-1].is = istride and dims[rank-1].0s = ostride.

In general, we only guarantee FFTW to return a non-NULL plan if the vector and trans-
form dimensions correspond to a set of distinct indices, and for in-place transforms the
input/output strides should be the same.

4.5.3 Guru Complex DFTs

fftw_plan fftw_plan_guru_dft(
int rank, const fftw_iodim *dims,
int howmany_rank, const fftw_iodim *howmany_dims,
fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

fftw_plan fftw_plan_guru_split_dft(
int rank, const fftw_iodim *dims,
int howmany_rank, const fftw_iodim *howmany_dims,
double *ri, double *ii, double *ro, double x*io,
unsigned flags);

These two functions plan a complex-data, multi-dimensional DFT for the interleaved
and split format, respectively. Transform dimensions are given by (rank, dims) over a
multi-dimensional vector (loop) of dimensions (howmany_rank, howmany_dims). dims and
howmany_dims should point to fftw_iodim arrays of length rank and howmany_rank,
respectively.

flags is a bitwise OR (‘|”) of zero or more planner flags, as defined in Section 4.3.2 [Planner
Flags|, page 25.

In the fftw_plan_guru_dft function, the pointers in and out point to the interleaved
input and output arrays, respectively. The sign can be either —1 (= FFTW_FORWARD) or +1
(= FFTW_BACKWARD). If the pointers are equal, the transform is in-place.

36 FFTW 3.3.10

In the fftw_plan_guru_split_dft function, ri and ii point to the real and imaginary
input arrays, and ro and io point to the real and imaginary output arrays. The input
and output pointers may be the same, indicating an in-place transform. For example, for
fftw_complex pointers in and out, the corresponding parameters are:

ri = (double *) in;
ii = (double *) in + 1;
ro = (double *) out;
io = (double *) out + 1;

Because fftw_plan_guru_split_dft accepts split arrays, strides are expressed in units of
double. For a contiguous fftw_complex array, the overall stride of the transform should be
2, the distance between consecutive real parts or between consecutive imaginary parts; see
Section 4.5.2 [Guru vector and transform sizes], page 34. Note that the dimension strides
are applied equally to the real and imaginary parts; real and imaginary arrays with different
strides are not supported.

There is no sign parameter in fftw_plan_guru_split_dft. This function always plans
for an FFTW_FORWARD transform. To plan for an FFTW_BACKWARD transform, you can exploit
the identity that the backwards DFT is equal to the forwards DFT with the real and
imaginary parts swapped. For example, in the case of the fftw_complex arrays above, the
FFTW_BACKWARD transform is computed by the parameters:

ri = (double *) in + 1;
ii = (double *) in;
ro = (double *) out + 1;
io = (double *) out;

4.5.4 Guru Real-data DFTs

fftw_plan fftw_plan_guru_dft_r2c(
int rank, const fftw_iodim *dims,
int howmany_rank, const fftw_iodim *howmany_dims,
double *in, fftw_complex *out,
unsigned flags);

fftw_plan fftw_plan_guru_split_dft_r2c(
int rank, const fftw_iodim *dims,
int howmany_rank, const fftw_iodim *howmany_dims,
double *in, double *ro, double *io,
unsigned flags);

fftw_plan fftw_plan_guru_dft_c2r(
int rank, const fftw_iodim *dims,
int howmany_rank, const fftw_iodim *howmany_dims,
fftw_complex *in, double *out,
unsigned flags);

fftw_plan fftw_plan_guru_split_dft_c2r(
int rank, const fftw_iodim *dims,

Chapter 4: FFTW Reference 37

int howmany_rank, const fftw_iodim *howmany_dims,
double *ri, double *ii, double *out,
unsigned flags);

Plan a real-input (r2c) or real-output (c2r), multi-dimensional DFT with transform dimen-
sions given by (rank, dims) over a multi-dimensional vector (loop) of dimensions (howmany _
rank, howmany_dims). dims and howmany_dims should point to fftw_iodim arrays of length
rank and howmany_rank, respectively. As for the basic and advanced interfaces, an r2c
transform is FFTW_FORWARD and a c2r transform is FFTW_BACKWARD.

The last dimension of dims is interpreted specially: that dimension of the real array has size
dims [rank-1] .n, but that dimension of the complex array has size dims [rank-1] .n/2+1
(division rounded down). The strides, on the other hand, are taken to be exactly as specified.
It is up to the user to specify the strides appropriately for the peculiar dimensions of the
data, and we do not guarantee that the planner will succeed (return non-NULL) for any
dimensions other than those described in Section 4.3.4 [Real-data DFT Array Format],
page 28, and generalized in Section 4.4.2 [Advanced Real-data DFTs|, page 33. (That is,
for an in-place transform, each individual dimension should be able to operate in place.)

in and out point to the input and output arrays for r2c and c¢2r transforms, respectively.
For split arrays, ri and ii point to the real and imaginary input arrays for a ¢2r transform,
and ro and io point to the real and imaginary output arrays for an r2c transform. in and
ro or ri and out may be the same, indicating an in-place transform. (In-place transforms
where in and io or ii and out are the same are not currently supported.)

flags is a bitwise OR (‘|”) of zero or more planner flags, as defined in Section 4.3.2 [Planner
Flags], page 25.

In-place transforms of rank greater than 1 are currently only supported for interleaved
arrays. For split arrays, the planner will return NULL.

4.5.5 Guru Real-to-real Transforms

fftw_plan fftw_plan_guru_r2r(int rank, const fftw_iodim *dims,
int howmany_rank,
const fftw_iodim *howmany_dims,
double *in, double *out,
const fftw_r2r_kind *kind,
unsigned flags);

Plan a real-to-real (r2r) multi-dimensional FFTW_FORWARD transform with transform dimen-
sions given by (rank, dims) over a multi-dimensional vector (loop) of dimensions (howmany _
rank, howmany_dims). dims and howmany_dims should point to fftw_iodim arrays of length
rank and howmany_rank, respectively.

The transform kind of each dimension is given by the kind parameter, which should point
to an array of length rank. Valid fftw_r2r_kind constants are given in Section 4.3.6
[Real-to-Real Transform Kinds], page 30.

in and out point to the real input and output arrays; they may be the same, indicating an
in-place transform.

flags is a bitwise OR (‘|”) of zero or more planner flags, as defined in Section 4.3.2 [Planner
Flags|, page 25.

38 FFTW 3.3.10

4.5.6 64-bit Guru Interface

When compiled in 64-bit mode on a 64-bit architecture (where addresses are 64 bits wide),
FFTW uses 64-bit quantities internally for all transform sizes, strides, and so on—you don’t
have to do anything special to exploit this. However, in the ordinary FFTW interfaces, you
specify the transform size by an int quantity, which is normally only 32 bits wide. This
means that, even though FFTW is using 64-bit sizes internally, you cannot specify a single
transform dimension larger than 23! — 1 numbers.

We expect that few users will require transforms larger than this, but, for those who do,
we provide a 64-bit version of the guru interface in which all sizes are specified as integers
of type ptrdiff_t instead of int. (ptrdiff_t is a signed integer type defined by the C
standard to be wide enough to represent address differences, and thus must be at least
64 bits wide on a 64-bit machine.) We stress that there is no performance advantage to
using this interface—the same internal FFTW code is employed regardless—and it is only
necessary if you want to specify very large transform sizes.

In particular, the 64-bit guru interface is a set of planner routines that are exactly the
same as the guru planner routines, except that they are named with ‘guru64’ instead of
‘guru’ and they take arguments of type fftw_iodim64 instead of fftw_iodim. For example,
instead of fftw_plan_guru_dft, we have fftw_plan_guru64_dft.

fftw_plan fftw_plan_guru64_dft(
int rank, const fftw_iodim64 *dims,
int howmany_rank, const fftw_iodim64 *howmany_dims,
fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

The fftw_iodim64 type is similar to fftw_iodim, with the same interpretation, except that
it uses type ptrdiff_t instead of type int.

typedef struct {
ptrdiff_t n;
ptrdiff_t is;
ptrdiff_t os;
} fftw_iodim64;

Every other ‘fftw_plan_guru’ function also has a ‘fftw_plan_guru64’ equivalent, but we
do not repeat their documentation here since they are identical to the 32-bit versions except
as noted above.

4.6 New-array Execute Functions

Normally, one executes a plan for the arrays with which the plan was created, by calling
fftw_execute(plan) as described in Section 4.2 [Using Plans], page 22. However, it is
possible for sophisticated users to apply a given plan to a different array using the “new-
array execute” functions detailed below, provided that the following conditions are met:

e The array size, strides, etcetera are the same (since those are set by the plan).

e The input and output arrays are the same (in-place) or different (out-of-place) if the
plan was originally created to be in-place or out-of-place, respectively.

Chapter 4: FFTW Reference 39

e For split arrays, the separations between the real and imaginary parts, ii-ri and
io-ro, are the same as they were for the input and output arrays when the plan was
created. (This condition is automatically satisfied for interleaved arrays.)

e The alignment of the new input/output arrays is the same as that of the input/output
arrays when the plan was created, unless the plan was created with the FFTW_UNALIGNED
flag. Here, the alignment is a platform-dependent quantity (for example, it is the ad-
dress modulo 16 if SSE SIMD instructions are used, but the address modulo 4 for
non-SIMD single-precision FFTW on the same machine). In general, only arrays allo-
cated with fftw_malloc are guaranteed to be equally aligned (see Section 3.1 [SIMD
alignment and fftw_malloc], page 15).

The alignment issue is especially critical, because if you don’t use fftw_malloc then you
may have little control over the alignment of arrays in memory. For example, neither the
C++ new function nor the Fortran allocate statement provide strong enough guarantees
about data alignment. If you don’t use fftw_malloc, therefore, you probably have to use
FFTW_UNALIGNED (which disables most SIMD support). If possible, it is probably better for
you to simply create multiple plans (creating a new plan is quick once one exists for a given
size), or better yet re-use the same array for your transforms.

For rare circumstances in which you cannot control the alignment of allocated memory, but
wish to determine where a given array is aligned like the original array for which a plan was
created, you can use the fftw_alignment_of function:

int fftw_alignment_of (double *p);

Two arrays have equivalent alignment (for the purposes of applying a plan) if and only if
fftw_alignment_of returns the same value for the corresponding pointers to their data
(typecast to double* if necessary).

If you are tempted to use the new-array execute interface because you want to transform a
known bunch of arrays of the same size, you should probably go use the advanced interface
instead (see Section 4.4 [Advanced Interface], page 31)).

The new-array execute functions are:

void fftw_execute_dft(
const fftw_plan p,
fftw_complex *in, fftw_complex *out);

void fftw_execute_split_dft(
const fftw_plan p,
double *ri, double *ii, double *ro, double *io);

void fftw_execute_dft_r2c(
const fftw_plan p,
double *in, fftw_complex *out);

void fftw_execute_split_dft_r2c(
const fftw_plan p,
double *in, double *ro, double *io);

40 FFTW 3.3.10

void fftw_execute_dft_c2r(
const fftw_plan p,
fftw_complex *in, double *out);

void fftw_execute_split_dft_c2r(
const fftw_plan p,
double *ri, double *ii, double *out) ;

void fftw_execute_r2r(
const fftw_plan p,
double *in, double *out);

These execute the plan to compute the corresponding transform on the input/output arrays
specified by the subsequent arguments. The input/output array arguments have the same
meanings as the ones passed to the guru planner routines in the preceding sections. The plan
is not modified, and these routines can be called as many times as desired, or intermixed
with calls to the ordinary fftw_execute.

The plan must have been created for the transform type corresponding to the execute
function, e.g. it must be a complex-DFT plan for fftw_execute_dft. Any of the planner
routines for that transform type, from the basic to the guru interface, could have been used
to create the plan, however.

4.7 Wisdom

This section documents the FFTW mechanism for saving and restoring plans from disk.
This mechanism is called wisdom.

4.7.1 Wisdom Export

int fftw_export_wisdom_to_filename(const char *filename);

void fftw_export_wisdom_to_file(FILE *output_file);

char *fftw_export_wisdom_to_string(void);

void fftw_export_wisdom(void (*write_char) (char c, void *), void *data);

These functions allow you to export all currently accumulated wisdom in a form from
which it can be later imported and restored, even during a separate run of the program.
(See Section 3.3 [Words of Wisdom-Saving Plans|, page 18.) The current store of wisdom
is not affected by calling any of these routines.

fftw_export_wisdom exports the wisdom to any output medium, as specified by the call-
back function write_char. write_char is a putc-like function that writes the character c
to some output; its second parameter is the data pointer passed to fftw_export_wisdom.
For convenience, the following three “wrapper” routines are provided:

fftw_export_wisdom_to_filename writes wisdom to a file named filename (which is cre-
ated or overwritten), returning 1 on success and 0 on failure. A lower-level function, which
requires you to open and close the file yourself (e.g. if you want to write wisdom to a portion
of a larger file) is fftw_export_wisdom_to_file. This writes the wisdom to the current

Chapter 4: FFTW Reference 41

position in output_file, which should be open with write permission; upon exit, the file
remains open and is positioned at the end of the wisdom data.

fftw_export_wisdom_to_string returns a pointer to a NULL-terminated string holding the
wisdom data. This string is dynamically allocated, and it is the responsibility of the caller
to deallocate it with free when it is no longer needed.

All of these routines export the wisdom in the same format, which we will not document
here except to say that it is LISP-like ASCII text that is insensitive to white space.

4.7.2 Wisdom Import

int fftw_import_system_wisdom(void);

int fftw_import_wisdom_from_filename(const char *filename);
int fftw_import_wisdom_from_string(const char *input_string);
int fftw_import_wisdom(int (*read_char) (void *), void *data);

These functions import wisdom into a program from data stored by the fftw_export_
wisdom functions above. (See Section 3.3 [Words of Wisdom-Saving Plans|, page 18.) The
imported wisdom replaces any wisdom already accumulated by the running program.

fftw_import_wisdom imports wisdom from any input medium, as specified by the callback
function read_char. read_char is a getc-like function that returns the next character in
the input; its parameter is the data pointer passed to fftw_import_wisdom. If the end of
the input data is reached (which should never happen for valid data), read_char should
return EOF (as defined in <stdio.h>). For convenience, the following three “wrapper”
routines are provided:

fftw_import_wisdom_from_filename reads wisdom from a file named filename. A lower-
level function, which requires you to open and close the file yourself (e.g. if you want to read
wisdom from a portion of a larger file) is fftw_import_wisdom_from_file. This reads wis-
dom from the current position in input_file (which should be open with read permission);
upon exit, the file remains open, but the position of the read pointer is unspecified.

fftw_import_wisdom_from_string reads wisdom from the NULL-terminated string input_
string.

fftw_import_system_wisdom reads wisdom from an implementation-defined standard file
(/etc/fftw/wisdom on Unix and GNU systems).

The return value of these import routines is 1 if the wisdom was read successfully and 0
otherwise. Note that, in all of these functions, any data in the input stream past the end
of the wisdom data is simply ignored.

4.7.3 Forgetting Wisdom

void fftw_forget_wisdom(void);

Calling fftw_forget_wisdom causes all accumulated wisdom to be discarded and its asso-
ciated memory to be freed. (New wisdom can still be gathered subsequently, however.)

4.7.4 Wisdom Utilities

FFTW includes two standalone utility programs that deal with wisdom. We merely sum-
marize them here, since they come with their own man pages for Unix and GNU systems
(with HTML versions on our web site).

42 FFTW 3.3.10

The first program is fftw-wisdom (or fftwf-wisdom in single precision, etcetera), which
can be used to create a wisdom file containing plans for any of the transform sizes and types
supported by FFTW. It is preferable to create wisdom directly from your executable (see
Section 3.4 [Caveats in Using Wisdom]|, page 18), but this program is useful for creating
global wisdom files for fftw_import_system_wisdom.

The second program is fftw-wisdom-to-conf, which takes a wisdom file as input and
produces a configuration routine as output. The latter is a C subroutine that you can
compile and link into your program, replacing a routine of the same name in the FFTW
library, that determines which parts of FF'TW are callable by your program. fftw-wisdom—
to-conf produces a configuration routine that links to only those parts of FFTW needed
by the saved plans in the wisdom, greatly reducing the size of statically linked executables
(which should only attempt to create plans corresponding to those in the wisdom, however).

4.8 What FFTW Really Computes

In this section, we provide precise mathematical definitions for the transforms that FFTW
computes. These transform definitions are fairly standard, but some authors follow slightly
different conventions for the normalization of the transform (the constant factor in front)
and the sign of the complex exponent. We begin by presenting the one-dimensional (1d)
transform definitions, and then give the straightforward extension to multi-dimensional
transforms.

4.8.1 The 1d Discrete Fourier Transform (DFT)

The forward (FFTW_FORWARD) discrete Fourier transform (DFT) of a 1d complex array X of
size n computes an array Y, where:

n—1
Yk: — ZXj(szﬂ'jk\/jl/n)

=0
The backward (FFTW_BACKWARD) DFT computes:

n—1
Vi = 3 X et

=0

FFTW computes an unnormalized transform, in that there is no coefficient in front of
the summation in the DFT. In other words, applying the forward and then the backward
transform will multiply the input by n.

From above, an FFTW_FORWARD transform corresponds to a sign of —1 in the exponent of
the DFT. Note also that we use the standard “in-order” output ordering—the k-th output
corresponds to the frequency k/n (or k/T, where T is your total sampling period). For
those who like to think in terms of positive and negative frequencies, this means that the
positive frequencies are stored in the first half of the output and the negative frequencies
are stored in backwards order in the second half of the output. (The frequency —k/n is the
same as the frequency (n — k)/n.)

Chapter 4: FFTW Reference 43

4.8.2 The 1d Real-data DFT

The real-input (r2c) DFT in FFTW computes the forward transform Y of the size n real
array X, exactly as defined above, i.e.
n—1
Yk: — ZXj(szﬂ'jk\/jl/n)

=0

This output array Y can easily be shown to possess the “Hermitian” symmetry Y, =Y ,,
where we take Y to be periodic so that Y, =Y.

As a result of this symmetry, half of the output Y is redundant (being the complex conjugate
of the other half), and so the 1d r2c¢ transforms only output elements 0. ..n/2 of Y (n/2+1
complex numbers), where the division by 2 is rounded down.

Moreover, the Hermitian symmetry implies that Y, and, if n is even, the Y,, /> element, are
purely real. So, for the R2HC r2r transform, the halfcomplex format does not store the
imaginary parts of these elements.

The c2r and H2RC r2r transforms compute the backward DFT of the compler array X
with Hermitian symmetry, stored in the r2c/R2HC output formats, respectively, where the
backward transform is defined exactly as for the complex case:

n—1
Yk — ZXje%Tjk\/jl/n)

=0

The outputs Y of this transform can easily be seen to be purely real, and are stored as an
array of real numbers.

Like FFTW’s complex DFT, these transforms are unnormalized. In other words, apply-
ing the real-to-complex (forward) and then the complex-to-real (backward) transform will
multiply the input by n.

4.8.3 1d Real-even DFTs (DCTs)

The Real-even symmetry DFTs in FFTW are exactly equivalent to the unnormalized for-
ward (and backward) DFTs as defined above, where the input array X of length N is
purely real and is also even symmetry. In this case, the output array is likewise real and
even symmetry.

For the case of REDFTO0, this even symmetry means that X; = Xx_;, where we take X to
be periodic so that Xy = X,. Because of this redundancy, only the first n real numbers
are actually stored, where N = 2(n —1).

The proper definition of even symmetry for REDFT10, REDFTO1, and REDFT11 transforms is
somewhat more intricate because of the shifts by 1/2 of the input and/or output, although
the corresponding boundary conditions are given in Section 2.5.2 [Real even/odd DFTs
(cosine/sine transforms)], page 11. Because of the even symmetry, however, the sine terms
in the DFT all cancel and the remaining cosine terms are written explicitly below. This
formulation often leads people to call such a transform a discrete cosine transform (DCT),
although it is really just a special case of the DFT.

In each of the definitions below, we transform a real array X of length n to a real array Y
of length n:

44 FFTW 3.3.10

REDFTO00 (DCT-I)
An REDFTOO0 transform (type-I DCT) in FFTW is defined by:

n—2
Yi=Xo+ (-1)FX,_ +2 Z X cos[mjk/(n —1)].

j=1

Note that this transform is not defined for n = 1. For n = 2, the summation term above is
dropped as you might expect.

REDFT10 (DCT-II)

An REDFT10 transform (type-II DCT, sometimes called “the” DCT) in FFTW is defined
by:
n—1
Y =2 Z X, cos[m(j+ 1/2)k/n)].

=0

REDFTO01 (DCT-III)
An REDFTO1 transform (type-III DCT) in FFTW is defined by:

n—1
Yie=Xo+2 ZXJ' cos[mj(k +1/2)/n].

j=1

In the case of n = 1, this reduces to ¥, = X,. Up to a scale factor (see below), this is the
inverse of REDFT10 (“the” DCT), and so the REDFTO1 (DCT-III) is sometimes called the
“IDCT”.

REDFT11 (DCT-1V)
An REDFT11 transform (type-IV DCT) in FFTW is defined by:

n—1

Ve =2 Xjcos[n(j +1/2)(k +1/2)/n].

J=0

Inverses and Normalization

These definitions correspond directly to the unnormalized DFTs used elsewhere in FFTW
(hence the factors of 2 in front of the summations). The unnormalized inverse of REDFTO0
is REDFT00, of REDFT10 is REDFTO1 and vice versa, and of REDFT11 is REDFT11. Each
unnormalized inverse results in the original array multiplied by IV, where N is the logical
DFT size. For REDFT00, N = 2(n — 1) (note that n = 1 is not defined); otherwise, N = 2n.

In defining the discrete cosine transform, some authors also include additional factors of v/2
(or its inverse) multiplying selected inputs and/or outputs. This is a mostly cosmetic change
that makes the transform orthogonal, but sacrifices the direct equivalence to a symmetric
DFT.

Chapter 4: FFTW Reference 45

4.8.4 1d Real-odd DFTs (DSTs)

The Real-odd symmetry DFTs in FF'TW are exactly equivalent to the unnormalized forward
(and backward) DFTs as defined above, where the input array X of length NV is purely real
and is also odd symmetry. In this case, the output is odd symmetry and purely imaginary.

For the case of RODFT00, this odd symmetry means that X; = —Xy_;, where we take X
to be periodic so that X = X,. Because of this redundancy, only the first n real numbers
starting at j = 1 are actually stored (the j = 0 element is zero), where N = 2(n + 1).

The proper definition of odd symmetry for RODFT10, RODFTO1, and RODFT11 transforms is
somewhat more intricate because of the shifts by 1/2 of the input and/or output, although
the corresponding boundary conditions are given in Section 2.5.2 [Real even/odd DFTs
(cosine/sine transforms)], page 11. Because of the odd symmetry, however, the cosine
terms in the DFT all cancel and the remaining sine terms are written explicitly below. This
formulation often leads people to call such a transform a discrete sine transform (DST),
although it is really just a special case of the DFT.

In each of the definitions below, we transform a real array X of length n to a real array Y
of length n:

RODFTO00 (DST-I)
An RODFTOO transform (type-I DST) in FFTW is defined by:

n—1

Ve =2 X;sin[r(j +1)(k+1)/(n+1)].

Jj=0

RODFT10 (DST-II)
An RODFT10 transform (type-II DST) in FFTW is defined by:

n—1
Ve, =2 X;sin[n(j+1/2)(k +1)/n].
7=0
RODFTO1 (DST-III)
An RODFTO1 transform (type-III DST) in FFTW is defined by:
n—2

V= (-1)"X,1+2) X;sin[r(j + 1)(k + 1/2)/n].

3=0
In the case of n = 1, this reduces to Yy = Xj.

RODFT11 (DST-IV)
An RODFT11 transform (type-IV DST) in FFTW is defined by:

n—1

Ve =2 X;sin[r(j +1/2)(k +1/2)/n].

Jj=0

46 FFTW 3.3.10

Inverses and Normalization

These definitions correspond directly to the unnormalized DFTs used elsewhere in FFTW
(hence the factors of 2 in front of the summations). The unnormalized inverse of RODFT00
is RODFTO00, of RODFT10 is RODFTO1 and vice versa, and of RODFT11 is RODFT11. Each
unnormalized inverse results in the original array multiplied by N, where N is the logical
DFT size. For RODFT00, N = 2(n + 1); otherwise, N = 2n.

In defining the discrete sine transform, some authors also include additional factors of
V2 (or its inverse) multiplying selected inputs and/or outputs. This is a mostly cosmetic
change that makes the transform orthogonal, but sacrifices the direct equivalence to an
antisymmetric DFT.

4.8.5 1d Discrete Hartley Transforms (DHTSs)

The discrete Hartley transform (DHT) of a 1d real array X of size n computes a real array
Y of the same size, where:

n—1

Vi = Xj[cos(2mjk/n) + sin(2mjk /n)].

=0

FFTW computes an unnormalized transform, in that there is no coefficient in front of the
summation in the DHT. In other words, applying the transform twice (the DHT is its own
inverse) will multiply the input by n.

4.8.6 Multi-dimensional Transforms

The multi-dimensional transforms of FFTW, in general, compute simply the separable
product of the given 1d transform along each dimension of the array. Since each of these
transforms is unnormalized, computing the forward followed by the backward/inverse multi-
dimensional transform will result in the original array scaled by the product of the normal-
ization factors for each dimension (e.g. the product of the dimension sizes, for a multi-
dimensional DFT).

As an explicit example, consider the following exact mathematical definition of our
multi-dimensional DFT. Let X be a d-dimensional complex array whose elements are
X[j1, 2, - -, 74), where 0 < j, < n, for all s € {1,2,...,d}. Let also w, = €™~/ for all
se{l,2,...,d}.

The forward transform computes a complex array Y, whose structure is the same as that
of X, defined by

ni—1lnz—1 ng—1
Y[kl’kz’“"kd] = Z Z Z X[j17j27"'a]d]]lkICU;th "‘w;jdkd .

J1=0 j2=0 Ja=0

The backward transform computes

N N Z Z s oo -+ Jaloof gt e

Chapter 4: FFTW Reference 47

Computing the forward transform followed by the backward transform will multiply the
array by Hle Ng-

The definition of FFTW’s multi-dimensional DFT of real data (r2c) deserves special at-
tention. In this case, we logically compute the full multi-dimensional DFT of the input
data; since the input data are purely real, the output data have the Hermitian symme-
try and therefore only one non-redundant half need be stored. More specifically, for an
Ng X Ny X Ny X -++ X ng_; multi-dimensional real-input DFT, the full (logical) complex
output array Y[kg, k1,...,kq_1] has the symmetry:

Y[k()aklu SR kd—l] = Y[no —koymy — ki, ngo1 — kd—l]*

(where each dimension is periodic). Because of this symmetry, we only store the k;_; =
0---ng_1/2 elements of the last dimension (division by 2 is rounded down). (We could
instead have cut any other dimension in half, but the last dimension proved computation-
ally convenient.) This results in the peculiar array format described in more detail by
Section 4.3.4 [Real-data DFT Array Format|, page 28.

The multi-dimensional c¢2r transform is simply the unnormalized inverse of the r2¢ trans-
form. i.e. it is the same as FFTW’s complex backward multi-dimensional DFT, operating
on a Hermitian input array in the peculiar format mentioned above and outputting a real
array (since the DFT output is purely real).

We should remind the user that the separable product of 1d transforms along each dimen-
sion, as computed by FFTW, is not always the same thing as the usual multi-dimensional
transform. A multi-dimensional R2HC (or HC2R) transform is not identical to the multi-
dimensional DFT, requiring some post-processing to combine the requisite real and imag-
inary parts, as was described in Section 2.5.1 [The Halfcomplex-format DFT]|, page 11.
Likewise, FFTW’s multidimensional FFTW_DHT r2r transform is not the same thing as the
logical multi-dimensional discrete Hartley transform defined in the literature, as discussed
in Section 2.5.3 [The Discrete Hartley Transform|, page 13.

49

5 Multi-threaded FFTW

In this chapter we document the parallel FFTW routines for shared-memory parallel hard-
ware. These routines, which support parallel one- and multi-dimensional transforms of both
real and complex data, are the easiest way to take advantage of multiple processors with
FFTW. They work just like the corresponding uniprocessor transform routines, except that
you have an extra initialization routine to call, and there is a routine to set the number
of threads to employ. Any program that uses the uniprocessor FFTW can therefore be
trivially modified to use the multi-threaded FFTW.

A shared-memory machine is one in which all CPUs can directly access the same main mem-
ory, and such machines are now common due to the ubiquity of multi-core CPUs. FFTW’s
multi-threading support allows you to utilize these additional CPUs transparently from a
single program. However, this does not necessarily translate into performance gains—when
multiple threads/CPUs are employed, there is an overhead required for synchronization
that may outweigh the computatational parallelism. Therefore, you can only benefit from
threads if your problem is sufficiently large.

5.1 Installation and Supported Hardware/Software

All of the FFTW threads code is located in the threads subdirectory of the FFTW pack-
age. On Unix systems, the FFTW threads libraries and header files can be automatically
configured, compiled, and installed along with the uniprocessor FFTW libraries simply by
including --enable-threads in the flags to the configure script (see Section 10.1 [Instal-
lation on Unix|, page 97), or -—enable-openmp to use OpenMP (http://www.openmp.org)
threads.

The threads routines require your operating system to have some sort of shared-memory
threads support. Specifically, the FEFTW threads package works with POSIX threads (avail-
able on most Unix variants, from GNU/Linux to MacOS X) and Win32 threads. OpenMP
threads, which are supported in many common compilers (e.g. gcc) are also supported, and
may give better performance on some systems. (OpenMP threads are also useful if you
are employing OpenMP in your own code, in order to minimize conflicts between threading
models.) If you have a shared-memory machine that uses a different threads API, it should
be a simple matter of programming to include support for it; see the file threads/threads.c
for more detail.

You can compile FFTW with both —-enable-threads and --enable-openmp at the same
time, since they install libraries with different names (‘fftw3_threads’ and ‘fftw3_omp’,
as described below). However, your programs may only link to one of these two libraries
at a time.

Ideally, of course, you should also have multiple processors in order to get any benefit from
the threaded transforms.

5.2 Usage of Multi-threaded FFTW

Here, it is assumed that the reader is already familiar with the usage of the uniprocessor
FFTW routines, described elsewhere in this manual. We only describe what one has to
change in order to use the multi-threaded routines.

http://www.openmp.org

50 FFTW 3.3.10

First, programs using the parallel complex transforms should be linked with -1fftw3_
threads -1fftw3 -1m on Unix, or -1fftw3_omp -1fftw3 -1lm if you compiled with
OpenMP. You will also need to link with whatever library is responsible for threads on
your system (e.g. -lpthread on GNU/Linux) or include whatever compiler flag enables
OpenMP (e.g. -fopenmp with gcc).

Second, before calling any FFTW routines, you should call the function:
int fftw_init_threads(void);

This function, which need only be called once, performs any one-time initialization required
to use threads on your system. It returns zero if there was some error (which should not
happen under normal circumstances) and a non-zero value otherwise.

Third, before creating a plan that you want to parallelize, you should call:
void fftw_plan_with_nthreads(int nthreads);

The nthreads argument indicates the number of threads you want FFTW to use (or actu-
ally, the maximum number). All plans subsequently created with any planner routine will
use that many threads. You can call fftw_plan_with_nthreads, create some plans, call
fftw_plan_with_nthreads again with a different argument, and create some more plans for
a new number of threads. Plans already created before a call to fftw_plan_with_nthreads
are unaffected. If you pass an nthreads argument of 1 (the default), threads are disabled
for subsequent plans.

You can determine the current number of threads that the planner can use by calling:
int fftw_planner_nthreads(void);

With OpenMP, to configure FFTW to use all of the currently running OpenMP threads (set
by omp_set_num_threads(nthreads) or by the OMP_NUM_THREADS environment variable),
you can do: fftw_plan_with_nthreads(omp_get_max_threads()). (The ‘omp_’ OpenMP
functions are declared via #include <omp.h>.)

Given a plan, you then execute it as usual with fftw_execute(plan), and the execution
will use the number of threads specified when the plan was created. When done, you
destroy it as usual with fftw_destroy_plan. As described in Section 5.4 [Thread safety],
page 51, plan ezecution is thread-safe, but plan creation and destruction are not: you
should create/destroy plans only from a single thread, but can safely execute multiple plans
in parallel.

There is one additional routine: if you want to get rid of all memory and other resources
allocated internally by FFTW, you can call:

void fftw_cleanup_threads(void);

which is much like the fftw_cleanup() function except that it also gets rid of threads-
related data. You must not execute any previously created plans after calling this function.

We should also mention one other restriction: if you save wisdom from a program using the
multi-threaded FFTW, that wisdom cannot be used by a program using only the single-
threaded FFTW (i.e. not calling fftw_init_threads). See Section 3.3 [Words of Wisdom-
Saving Plans], page 18.

Chapter 5: Multi-threaded FFTW 51

Finally, FFTW provides a optional callback interface that allows you to replace its parallel
threading backend at runtime:

void fftw_threads_set_callback(
void (*parallel_loop) (void *(*work) (void *), char *jobdata, size_t
void *data);

This routine (which is not threadsafe and should generally be called before creating any
FEFTW plans) allows you to provide a function parallel_loop that executes parallel work
for FEF'TW: it should call the function work(jobdata + elsize*i) for i from 0 to njobs-1,
possibly in parallel. (The ‘data‘ pointer supplied to fftw_threads_set_callback is passed
through to your parallel_loop function.) For example, if you link to an FFTW threads
library built to use POSIX threads, but you want it to use OpenMP instead (because you
are using OpenMP elsewhere in your program and want to avoid competing threads), you
can call fftw_threads_set_callback with the callback function:

elsize, int njo

void parallel_loop(void *(*work) (char *), char *jobdata, size_t elsize, int njobs, voi

{
#pragma omp parallel for
for (int i = 0; i < njobs; ++i)
work(jobdata + elsize * i);

}

The same mechanism could be used in order to make FFTW use a threading backend
implemented via Intel TBB, Apple GCD, or Cilk, for example.

5.3 How Many Threads to Use?

There is a fair amount of overhead involved in synchronizing threads, so the optimal number
of threads to use depends upon the size of the transform as well as on the number of
processors you have.

As a general rule, you don’t want to use more threads than you have processors. (Using
more threads will work, but there will be extra overhead with no benefit.) In fact, if the
problem size is too small, you may want to use fewer threads than you have processors.

You will have to experiment with your system to see what level of parallelization is best
for your problem size. Typically, the problem will have to involve at least a few thou-
sand data points before threads become beneficial. If you plan with FFTW_PATIENT, it will
automatically disable threads for sizes that don’t benefit from parallelization.

5.4 Thread safety

Users writing multi-threaded programs (including OpenMP) must concern themselves with
the thread safety of the libraries they use—that is, whether it is safe to call routines in
parallel from multiple threads. FFTW can be used in such an environment, but some care
must be taken because the planner routines share data (e.g. wisdom and trigonometric
tables) between calls and plans.

The upshot is that the only thread-safe routine in FFTW is fftw_execute (and the new-
array variants thereof). All other routines (e.g. the planner) should only be called from
one thread at a time. So, for example, you can wrap a semaphore lock around any calls to

52 FFTW 3.3.10

the planner; even more simply, you can just create all of your plans from one thread. We
do not think this should be an important restriction (FFTW is designed for the situation
where the only performance-sensitive code is the actual execution of the transform), and
the benefits of shared data between plans are great.

Note also that, since the plan is not modified by fftw_execute, it is safe to execute the
same plan in parallel by multiple threads. However, since a given plan operates by default
on a fixed array, you need to use one of the new-array execute functions (see Section 4.6
[New-array Execute Functions|, page 38) so that different threads compute the transform
of different data.

(Users should note that these comments only apply to programs using shared-memory
threads or OpenMP. Parallelism using MPI or forked processes involves a separate address-
space and global variables for each process, and is not susceptible to problems of this sort.)

The FFTW planner is intended to be called from a single thread. If you really must call
it from multiple threads, you are expected to grab whatever lock makes sense for your
application, with the understanding that you may be holding that lock for a long time,
which is undesirable.

Neither strategy works, however, in the following situation. The “application” is structured
as a set of “plugins” which are unaware of each other, and for whatever reason the “plugins”
cannot coordinate on grabbing the lock. (This is not a technical problem, but an organi-
zational one. The “plugins” are written by independent agents, and from the perspective
of each plugin’s author, each plugin is using FFTW correctly from a single thread.) To
cope with this situation, starting from FFTW-3.3.5, FFTW supports an API to make the
planner thread-safe:

void fftw_make_planner_thread_safe(void);

This call operates by brute force: It just installs a hook that wraps a lock (chosen by us)
around all planner calls. So there is no magic and you get the worst of all worlds. The
planner is still single-threaded, but you cannot choose which lock to use. The planner still
holds the lock for a long time, but you cannot impose a timeout on lock acquisition. As of
FFTW-3.3.5 and FFTW-3.3.6, this call does not work when using OpenMP as threading
substrate. (Suggestions on what to do about this bug are welcome.) Do not use fftw_make_
planner_thread_safe unless there is no other choice, such as in the application/plugin
situation.

93

6 Distributed-memory FFTW with MPI

In this chapter we document the parallel FF'TW routines for parallel systems supporting the
MPI message-passing interface. Unlike the shared-memory threads described in the previous
chapter, MPI allows you to use distributed-memory parallelism, where each CPU has its
own separate memory, and which can scale up to clusters of many thousands of processors.
This capability comes at a price, however: each process only stores a portion of the data to
be transformed, which means that the data structures and programming-interface are quite
different from the serial or threads versions of FFTW.

Distributed-memory parallelism is especially useful when you are transforming arrays so
large that they do not fit into the memory of a single processor. The storage per-process
required by FFTW’s MPI routines is proportional to the total array size divided by the
number of processes. Conversely, distributed-memory parallelism can easily pose an un-
acceptably high communications overhead for small problems; the threshold problem size
for which parallelism becomes advantageous will depend on the precise problem you are
interested in, your hardware, and your MPI implementation.

A note on terminology: in MPI, you divide the data among a set of “processes” which each
run in their own memory address space. Generally, each process runs on a different physical
processor, but this is not required. A set of processes in MPI is described by an opaque
data structure called a “communicator,” the most common of which is the predefined com-
municator MPI_COMM_WORLD which refers to all processes. For more information on these
and other concepts common to all MPI programs, we refer the reader to the documentation
at the MPI home page (http://www.mcs.anl.gov/research/projects/mpi/).

We assume in this chapter that the reader is familiar with the usage of the serial (unipro-
cessor) FFTW, and focus only on the concepts new to the MPI interface.

6.1 FFTW MPI Installation

All of the FFTW MPI code is located in the mpi subdirectory of the FFTW package.
On Unix systems, the FFTW MPI libraries and header files are automatically configured,
compiled, and installed along with the uniprocessor FFTW libraries simply by including
--enable-mpi in the flags to the configure script (see Section 10.1 [Installation on Unix],
page 97).

Any implementation of the MPI standard, version 1 or later, should work with FFTW.
The configure script will attempt to automatically detect how to compile and link code
using your MPI implementation. In some cases, especially if you have multiple different
MPI implementations installed or have an unusual MPI software package, you may need to
provide this information explicitly.

Most commonly, one compiles MPI code by invoking a special compiler command, typically
mpicc for C code. The configure script knows the most common names for this command,
but you can specify the MPI compilation command explicitly by setting the MPICC variable,

)

as in ‘./configure MPICC=mpicc ...".

If, instead of a special compiler command, you need to link a certain library, you can
specify the link command via the MPILIBS variable, as in ‘./configure MPILIBS=-1lmpi

http://www.mcs.anl.gov/research/projects/mpi/

54 FFTW 3.3.10

...7. Note that if your MPI library is installed in a non-standard location (one the compiler
does not know about by default), you may also have to specify the location of the library
and header files via LDFLAGS and CPPFLAGS variables, respectively, as in ‘./configure
LDFLAGS=-L/path/to/mpi/libs CPPFLAGS=-I/path/to/mpi/include

6.2 Linking and Initializing MPI FFTW

Programs using the MPI FFTW routines should be linked with -1fftw3_mpi -1fftw3 -1m
on Unix in double precision, -1fftw3f_mpi -1fftw3f -1m in single precision, and so on
(see Section 4.1.2 [Precision], page 21). You will also need to link with whatever library
is responsible for MPI on your system; in most MPI implementations, there is a special
compiler alias named mpicc to compile and link MPI code.

Before calling any FFTW routines except possibly fftw_init_threads (see Section 6.11
[Combining MPI and Threads], page 66), but after calling MPI_Init, you should call the
function:

void fftw_mpi_init(void);

If, at the end of your program, you want to get rid of all memory and other resources
allocated internally by FFTW, for both the serial and MPI routines, you can call:

void fftw_mpi_cleanup(void);

which is much like the fftw_cleanup() function except that it also gets rid of FFTW’s
MPI-related data. You must not execute any previously created plans after calling this
function.

6.3 2d MPI example

Before we document the FFTW MPI interface in detail, we begin with a simple example
outlining how one would perform a two-dimensional NO by N1 complex DFT.

#include <fftw3-mpi.h>

int main(int argc, char **xargv)
{
const ptrdiff t NO = ..., N1 = ...;
fftw_plan plan;
fftw_complex *data;
ptrdiff_t alloc_local, local_n0O, local_O_start, i, j;

MPI_Init(&argc, &argv);
fftw_mpi_initQ);

/* get local data size and allocate */

alloc_local = fftw_mpi_local_size_2d(NO, N1, MPI_COMM_WORLD,
&local_n0O, &local_O_start);

data = fftw_alloc_complex(alloc_local);

/* create plan for in-place forward DFT */

Chapter 6: Distributed-memory FFTW with MPI 55

plan = fftw_mpi_plan_dft_2d(NO, N1, data, data, MPI_COMM_WORLD,
FFTW_FORWARD, FFTW_ESTIMATE);

/* initialize data to some function my_function(x,y) */
for (i = 0; i < local_n0; ++i) for (j = 0; j < N1; ++j)
datal[i*N1 + j]l = my_function(local_O_start + i, j);

/* compute transforms, in-place, as many times as desired */
fftw_execute(plan);

fftw_destroy_plan(plan);

MPI_Finalize();
}

As can be seen above, the MPI interface follows the same basic style of allo-
cate/plan/execute/destroy as the serial FFTW routines. All of the MPI-specific routines
are prefixed with ‘fftw_mpi_’ instead of ‘fftw_’. There are a few important differences,
however:

First, we must call fftw_mpi_init () after calling MPI_Init (required in all MPI programs)
and before calling any other ‘fftw_mpi_’ routine.

Second, when we create the plan with fftw_mpi_plan_dft_2d, analogous to fftw_plan_
dft_2d, we pass an additional argument: the communicator, indicating which processes will
participate in the transform (here MPI_COMM_WORLD, indicating all processes). Whenever you
create, execute, or destroy a plan for an MPI transform, you must call the corresponding
FFTW routine on all processes in the communicator for that transform. (That is, these are
collective calls.) Note that the plan for the MPI transform uses the standard fftw_execute
and fftw_destroy routines (on the other hand, there are MPI-specific new-array execute
functions documented below).

Third, all of the FFTW MPI routines take ptrdiff_t arguments instead of int as for the
serial FFTW. ptrdiff_t is a standard C integer type which is (at least) 32 bits wide on a
32-bit machine and 64 bits wide on a 64-bit machine. This is to make it easy to specify very
large parallel transforms on a 64-bit machine. (You can specify 64-bit transform sizes in
the serial FFTW, too, but only by using the ‘guru64’ planner interface. See Section 4.5.6
[64-bit Guru Interface|, page 38.)

Fourth, and most importantly, you don’t allocate the entire two-dimensional array on each
process. Instead, you call fftw_mpi_local_size_2d to find out what portion of the array
resides on each processor, and how much space to allocate. Here, the portion of the array on
each process is a local_nO by N1 slice of the total array, starting at index local_0_start.
The total number of fftw_complex numbers to allocate is given by the alloc_local return
value, which may be greater than local_nO * N1 (in case some intermediate calculations
require additional storage). The data distribution in FFTW’s MPI interface is described in
more detail by the next section.

Given the portion of the array that resides on the local process, it is straightforward to
initialize the data (here to a function myfunction) and otherwise manipulate it. Of course,

56 FFTW 3.3.10

at the end of the program you may want to output the data somehow, but synchronizing
this output is up to you and is beyond the scope of this manual. (One good way to output
a large multi-dimensional distributed array in MPI to a portable binary file is to use the
free HDF5 library; see the HDF home page (http://www.hdfgroup.org/).)

6.4 MPI Data Distribution

The most important concept to understand in using FFTW’s MPI interface is the data
distribution. With a serial or multithreaded FFT, all of the inputs and outputs are stored
as a single contiguous chunk of memory. With a distributed-memory FFT, the inputs and
outputs are broken into disjoint blocks, one per process.

In particular, FFTW uses a 1d block distribution of the data, distributed along the first
dimension. For example, if you want to perform a 100 x 200 complex DFT, distributed
over 4 processes, each process will get a 25 x 200 slice of the data. That is, process 0
will get rows 0 through 24, process 1 will get rows 25 through 49, process 2 will get rows
50 through 74, and process 3 will get rows 75 through 99. If you take the same array but
distribute it over 3 processes, then it is not evenly divisible so the different processes will
have unequal chunks. FFTW’s default choice in this case is to assign 34 rows to processes
0 and 1, and 32 rows to process 2.

FFTW provides several ‘fftw_mpi_local_size’ routines that you can call to find out what
portion of an array is stored on the current process. In most cases, you should use the
default block sizes picked by FFTW, but it is also possible to specify your own block size.
For example, with a 100 x 200 array on three processes, you can tell FFTW to use a block
size of 40, which would assign 40 rows to processes 0 and 1, and 20 rows to process 2.
FFTW’s default is to divide the data equally among the processes if possible, and as best
it can otherwise. The rows are always assigned in “rank order,” i.e. process 0 gets the first
block of rows, then process 1, and so on. (You can change this by using MPI_Comm_split
to create a new communicator with re-ordered processes.) However, you should always call
the ‘fftw_mpi_local_size’ routines, if possible, rather than trying to predict FFTW’s
distribution choices.

In particular, it is critical that you allocate the storage size that is returned by
‘fftw_mpi_local_size’, which is not necessarily the size of the local slice of the array.
The reason is that intermediate steps of FFTW’s algorithms involve transposing the array
and redistributing the data, so at these intermediate steps FFTW may require more
local storage space (albeit always proportional to the total size divided by the number of
processes). The ‘fftw_mpi_local_size’ functions know how much storage is required for
these intermediate steps and tell you the correct amount to allocate.

6.4.1 Basic and advanced distribution interfaces

As with the planner interface, the ‘fftw_mpi_local_size’ distribution interface is broken
into basic and advanced (‘_many’) interfaces, where the latter allows you to specify the block
size manually and also to request block sizes when computing multiple transforms simulta-
neously. These functions are documented more exhaustively by the FFTW MPI Reference,
but we summarize the basic ideas here using a couple of two-dimensional examples.

For the 100 x 200 complex-DFT example, above, we would find the distribution by calling
the following function in the basic interface:

http://www.hdfgroup.org/

Chapter 6: Distributed-memory FFTW with MPI 57

ptrdiff_t fftw_mpi_local_size_2d(ptrdiff_t nO, ptrdiff_t nl, MPI_Comm comm,
ptrdiff_t *local_nO, ptrdiff_t *local_O_start);

Given the total size of the data to be transformed (here, n0 = 100 and n1 = 200) and an
MPI communicator (comm), this function provides three numbers.

First, it describes the shape of the local data: the current process should store a local_n0
by n1 slice of the overall dataset, in row-major order (n1 dimension contiguous), starting
at index local_O_start. That is, if the total dataset is viewed as a n0 by nl matrix,
the current process should store the rows local_O_start to local_O_start+local_nO-1.
Obviously, if you are running with only a single MPI process, that process will store the
entire array: local_O_start will be zero and local_nO will be n0. See Section 3.2.1
[Row-major Format|, page 15.

Second, the return value is the total number of data elements (e.g., complex numbers for a
complex DFT) that should be allocated for the input and output arrays on the current pro-
cess (ideally with fftw_malloc or an ‘fftw_alloc’ function, to ensure optimal alignment).
It might seem that this should always be equal to local_nO * nl, but this is not the case.
FFTW’s distributed FFT algorithms require data redistributions at intermediate stages of
the transform, and in some circumstances this may require slightly larger local storage.
This is discussed in more detail below, under Section 6.4.2 [Load balancing], page 58.

The advanced-interface ‘local_size’ function for multidimensional transforms returns the
same three things (local_n0, local_O_start, and the total number of elements to allocate),
but takes more inputs:

ptrdiff_t fftw_mpi_local_size_many(int rnk, const ptrdiff_t =m,
ptrdiff_t howmany,
ptrdiff_t blockO,
MPI_Comm comm,
ptrdiff_t *local_nO,
ptrdiff_t *local_O_start);

The two-dimensional case above corresponds to rnk = 2 and an array n of length 2 with
n[0] =n0 and n[1] = n1. This routine is for any rnk > 1; one-dimensional transforms have
their own interface because they work slightly differently, as discussed below.

First, the advanced interface allows you to perform multiple transforms at once, of inter-
leaved data, as specified by the howmany parameter. (hoamany is 1 for a single transform.)

Second, here you can specify your desired block size in the nO dimension, block0. To use
FFTW’s default block size, pass FFTW_MPI_DEFAULT_BLOCK (0) for blockO. Otherwise, on
P processes, FFTW will return local_nO equal to blockO on the first P / blockO processes
(rounded down), return local_n0 equal ton0 - blockO * (P / block0) on the next process,
and local_nO equal to zero on any remaining processes. In general, we recommend using
the default block size (which corresponds to n0 / P, rounded up).

For example, suppose you have P = 4 processes and n0 = 21. The default will be a block
size of 6, which will give 1local_nO = 6 on the first three processes and local_nO = 3 on the
last process. Instead, however, you could specify blockO = 5 if you wanted, which would
give local_nO = 5 on processes 0 to 2, local_n0 = 6 on process 3. (This choice, while it
may look superficially more “balanced,” has the same critical path as FFTW’s default but
requires more communications.)

58 FFTW 3.3.10

6.4.2 Load balancing

Ideally, when you parallelize a transform over some P processes, each process should end up
with work that takes equal time. Otherwise, all of the processes end up waiting on whichever
process is slowest. This goal is known as “load balancing.” In this section, we describe the
circumstances under which FFTW is able to load-balance well, and in particular how you
should choose your transform size in order to load balance.

Load balancing is especially difficult when you are parallelizing over heterogeneous ma-
chines; for example, if one of your processors is a old 486 and another is a Pentium IV,
obviously you should give the Pentium more work to do than the 486 since the latter is much
slower. FFTW does not deal with this problem, however—it assumes that your processes
run on hardware of comparable speed, and that the goal is therefore to divide the problem
as equally as possible.

For a multi-dimensional complex DFT, FFTW can divide the problem equally among the
processes if: (i) the first dimension n0 is divisible by P; and (ii), the product of the sub-
sequent dimensions is divisible by P. (For the advanced interface, where you can specify
multiple simultaneous transforms via some “vector” length howmany, a factor of howmany is
included in the product of the subsequent dimensions.)

For a one-dimensional complex DFT, the length N of the data should be divisible by P
squared to be able to divide the problem equally among the processes.

6.4.3 Transposed distributions

Internally, FFTW’s MPI transform algorithms work by first computing transforms of the
data local to each process, then by globally transposing the data in some fashion to redis-
tribute the data among the processes, transforming the new data local to each process, and
transposing back. For example, a two-dimensional n0 by nl1 array, distributed across the
n0 dimension, is transformd by: (i) transforming the n1 dimension, which are local to each
process; (ii) transposing to an nl by nO array, distributed across the n1 dimension; (iii)
transforming the n0 dimension, which is now local to each process; (iv) transposing back.

However, in many applications it is acceptable to compute a multidimensional DFT whose
results are produced in transposed order (e.g., n1 by n0 in two dimensions). This provides
a significant performance advantage, because it means that the final transposition step
can be omitted. FFTW supports this optimization, which you specify by passing the flag
FFTW_MPI_TRANSPOSED_OUT to the planner routines. To compute the inverse transform of
transposed output, you specify FFTW_MPI_TRANSPOSED_IN to tell it that the input is trans-
posed. In this section, we explain how to interpret the output format of such a transform.

Suppose you have are transforming multi-dimensional data with (at least two) dimensions
ng X Ny X Ng X --- X ng_1 . As always, it is distributed along the first dimension ng . Now,
if we compute its DF'T with the FFTW_MPI_TRANSPOSED_OUT flag, the resulting output data
are stored with the first two dimensions transposed: n; X ng X ng X -+ X ng_; , distributed
along the n; dimension. Conversely, if we take the n; X ng X ny X --- X ng_; data and
transform it with the FFTW_MPI_TRANSPOSED_IN flag, then the format goes back to the
original ng X ny X ng X +++ X ng_; array.

Chapter 6: Distributed-memory FFTW with MPI 59

There are two ways to find the portion of the transposed array that resides on the cur-
rent process. First, you can simply call the appropriate ‘local_size’ function, passing
Ny X Ng X Ng X +-- X ng_; (the transposed dimensions). This would mean calling the
‘local_size’ function twice, once for the transposed and once for the non-transposed di-
mensions. Alternatively, you can call one of the ‘local_size_transposed’ functions, which
returns both the non-transposed and transposed data distribution from a single call. For
example, for a 3d transform with transposed output (or input), you might call:

ptrdiff_t fftw_mpi_local_size_3d_transposed(
ptrdiff_t nO, ptrdiff_t nl, ptrdiff_t n2, MPI_Comm comm,
ptrdiff_t *local_nO, ptrdiff_t *local_O_start,
ptrdiff_t *local_nl, ptrdiff_t *local_1_start);

Here, local_nO and local_O_start give the size and starting index of the n0 dimension for
the non-transposed data, as in the previous sections. For transposed data (e.g. the output
for FFTW_MPI_TRANSPOSED_OUT), local_nl and local_1_start give the size and starting
index of the n1 dimension, which is the first dimension of the transposed data (n1 by n0 by
n2).

(Note that FFTW_MPI_TRANSPOSED_IN is completely equivalent to performing FFTW_MPI_
TRANSPOSED_OUT and passing the first two dimensions to the planner in reverse order, or
vice versa. If you pass both the FFTW_MPI_TRANSPOSED_IN and FFTW_MPI_TRANSPOSED_QOUT
flags, it is equivalent to swapping the first two dimensions passed to the planner and passing
neither flag.)

6.4.4 One-dimensional distributions

For one-dimensional distributed DFT's using FFTW, matters are slightly more complicated
because the data distribution is more closely tied to how the algorithm works. In particular,
you can no longer pass an arbitrary block size and must accept FFTW’s default; also, the
block sizes may be different for input and output. Also, the data distribution depends on
the flags and transform direction, in order for forward and backward transforms to work
correctly.

ptrdiff_t fftw_mpi_local_size_1ld(ptrdiff_t nO, MPI_Comm comm,
int sign, unsigned flags,
ptrdiff_t *local_ni, ptrdiff_t *local_i_start,
ptrdiff_t *local_no, ptrdiff_t *local_o_start);

This function computes the data distribution for a 1d transform of size n0 with the given
transform sign and flags. Both input and output data use block distributions. The input
on the current process will consist of local_ni numbers starting at index local_i_start;
e.g. if only a single process is used, then local_ni will be n0 and local_i_start will be
0. Similarly for the output, with local_no numbers starting at index local_o_start. The
return value of fftw_mpi_local_size_1d will be the total number of elements to allocate
on the current process (which might be slightly larger than the local size due to intermediate
steps in the algorithm).

As mentioned above (see Section 6.4.2 [Load balancing], page 58), the data will be divided
equally among the processes if n0 is divisible by the square of the number of processes. In
this case, local_ni will equal local_no. Otherwise, they may be different.

60 FFTW 3.3.10

For some applications, such as convolutions, the order of the output data is irrelevant. In
this case, performance can be improved by specifying that the output data be stored in an
FFTW-defined “scrambled” format. (In particular, this is the analogue of transposed output
in the multidimensional case: scrambled output saves a communications step.) If you pass
FFTW_MPI_SCRAMBLED_OUT in the flags, then the output is stored in this (undocumented)
scrambled order. Conversely, to perform the inverse transform of data in scrambled order,
pass the FFTW_MPI_SCRAMBLED_IN flag.

In MPI FFTW, only composite sizes n0 can be parallelized; we have not yet implemented
a parallel algorithm for large prime sizes.

6.5 Multi-dimensional MPI DFTs of Real Data

FFTW’s MPI interface also supports multi-dimensional DFTs of real data, similar to the
serial r2c and c2r interfaces. (Parallel one-dimensional real-data DFTs are not currently
supported; you must use a complex transform and set the imaginary parts of the inputs to
zero.)

The key points to understand for r2¢ and ¢2r MPI transforms (compared to the MPI complex
DFTs or the serial r2¢/c2r transforms), are:

e Just as for serial transforms, r2c/c2r DFTs transform ng X ny X ng X --+ X ng_; real
data to/from ng X ny X ng X + -+ X (ng_1/241) complex data: the last dimension of the
complex data is cut in half (rounded down), plus one. As for the serial transforms, the
sizes you pass to the ‘plan_dft_r2c’ and ‘plan_dft_c2r’ are the ngxXng Xng X« Xng_
dimensions of the real data.

e Although the real data is conceptually ng X n; Xng X -+ Xng_1 , it is physically stored as
an ng X ny X ng X -+ X [2(ng_1/241)] array, where the last dimension has been padded
to make it the same size as the complex output. This is much like the in-place serial
r2¢/c2r interface (see Section 2.4 [Multi-Dimensional DFTs of Real Data|, page 7),
except that in MPI the padding is required even for out-of-place data. The extra
padding numbers are ignored by FFTW (they are not like zero-padding the transform
to a larger size); they are only used to determine the data layout.

e The data distribution in MPI for both the real and complex data is determined by the
shape of the complex data. That is, you call the appropriate ‘local size’ function for
the ng xmny Xng X -+ x (ng_1/2+1) complex data, and then use the same distribution
for the real data except that the last complex dimension is replaced by a (padded) real
dimension of twice the length.

For example suppose we are performing an out-of-place r2c transform of L x M x N real
data [padded to L x M x 2(N/2+1) |, resulting in L x M x N/2+1 complex data. Similar
to the example in Section 6.3 [2d MPI example], page 54, we might do something like:

#include <fftw3-mpi.h>

int main(int argc, char **argv)

{
const ptrdiff t L= ..., M= ..., N=...;
fftw_plan plan;

Chapter 6: Distributed-memory FFTW with MPI 61

double *rin;
fftw_complex *cout;
ptrdiff_t alloc_local, local_nO, local_O_start, i, j, k;

MPI_Init(&argc, &argv);
fftw_mpi_initQ);

/* get local data size and allocate */

alloc_local = fftw_mpi_local_size_3d(L, M, N/2+1, MPI_COMM_WORLD,
&local_n0O, &local_O_start);

rin = fftw_alloc_real(2 * alloc_local);

cout = fftw_alloc_complex(alloc_local);

/* create plan for out-of-place r2c DFT */
plan = fftw_mpi_plan_dft_r2c_3d(L, M, N, rin, cout, MPI_COMM_WORLD,
FFTW_MEASURE) ;

/* initialize rin to some function my_func(x,y,z) */
for (i = 0; i < local_nO; ++i)
for (j = 0; j < M; ++j)
for (k = 0; k < N; ++k)
rin[(i*M + j) * (2%(N/2+1)) + k] = my_func(local_O_start+i, j, k);

/* compute transforms as many times as desired */
fftw_execute(plan);

fftw_destroy_plan(plan);

MPI_Finalize();

Note that we allocated rin using fftw_alloc_real with an argument of 2 * alloc_local:
since alloc_local is the number of complex values to allocate, the number of real values
is twice as many. The rin array is then local,0 x M x 2(N/2+ 1) in row-major order, so
its (i,j,k) element is at the index (i*M + j) * (2%(N/2+1)) + k (see (undefined) [Multi-
dimensional Array Format |, page (undefined)).

As for the complex transforms, improved performance can be obtained by specifying that
the output is the transpose of the input or vice versa (see Section 6.4.3 [Transposed distri-
butions|, page 58). In our L x M x N r2c example, including FFTW_TRANSPOSED_OUT in the
flags means that the input would be a padded L x M x 2(N/2 4 1) real array distributed
over the L dimension, while the output would be a M x L x N/2 +1 complex array dis-
tributed over the M dimension. To perform the inverse c2r transform with the same data
distributions, you would use the FFTW_TRANSPOSED_IN flag.

62 FFTW 3.3.10

6.6 Other multi-dimensional Real-Data MPI Transforms

FFTW’s MPI interface also supports multi-dimensional ‘r2r’ transforms of all kinds sup-
ported by the serial interface (e.g. discrete cosine and sine transforms, discrete Hartley
transforms, etc.). Only multi-dimensional ‘r2r’ transforms, not one-dimensional trans-
forms, are currently parallelized.

These are used much like the multidimensional complex DFTs discussed above, except that
the data is real rather than complex, and one needs to pass an r2r transform kind (fftw_
r2r_kind) for each dimension as in the serial FFTW (see Section 2.5 [More DFTs of Real
Datal, page 10).

For example, one might perform a two-dimensional L x M that is an REDFT10 (DCT-II)
in the first dimension and an RODFT10 (DST-II) in the second dimension with code like:

const ptrdiff t L= ..., M= ...;

fftw_plan plan;

double *data;

ptrdiff_t alloc_local, local_n0O, local_O_start, i, j;

/* get local data size and allocate */

alloc_local = fftw_mpi_local_size_2d(L, M, MPI_COMM_WORLD,
&local_n0, &local_O_start);

data = fftw_alloc_real(alloc_local);

/* create plan for in-place REDFT10 x RODFT10 */
plan = fftw_mpi_plan_r2r_2d(L, M, data, data, MPI_COMM_WORLD,
FFTW_REDFT10, FFTW_RODFT10, FFTW_MEASURE) ;

/* initialize data to some function my_function(x,y) */
