
Kerberos Administration Guide
Release 1.22.1

MIT

CONTENTS

1 Installation guide 1

2 Configuration Files 11

3 Realm configuration decisions 45

4 Database administration 51

5 Database types 61

6 Account lockout 65

7 Configuring Kerberos with OpenLDAP back-end 69

8 Application servers 71

9 Host configuration 75

10 Backups of secure hosts 79

11 PKINIT configuration 81

12 OTP Preauthentication 87

13 SPAKE Preauthentication 89

14 Addressing dictionary attack risks 91

15 Principal names and DNS 93

16 Encryption types 95

17 HTTPS proxy configuration 99

18 Authentication indicators 101

19 Administration programs 103

20 MIT Kerberos defaults 143

21 Environment variables 147

22 Troubleshooting 149

i

23 Advanced topics 151

24 Various links 159

Index 161

ii

CHAPTER

ONE

INSTALLATION GUIDE

1.1 Contents

1.1.1 Installing KDCs

When setting up Kerberos in a production environment, it is best to have multiple replica KDCs alongside with a
primary KDC to ensure the continued availability of the Kerberized services. Each KDC contains a copy of the Kerberos
database. The primary KDC contains the writable copy of the realm database, which it replicates to the replica KDCs
at regular intervals. All database changes (such as password changes) are made on the primary KDC. Replica KDCs
provide Kerberos ticket-granting services, but not database administration, when the primary KDC is unavailable. MIT
recommends that you install all of your KDCs to be able to function as either the primary or one of the replicas. This
will enable you to easily switch your primary KDC with one of the replicas if necessary (see Switching primary and
replica KDCs). This installation procedure is based on that recommendation.

Warning:

• The Kerberos system relies on the availability of correct time information. Ensure that the primary and all
replica KDCs have properly synchronized clocks.

• It is best to install and run KDCs on secured and dedicated hardware with limited access. If your KDC is
also a file server, FTP server, Web server, or even just a client machine, someone who obtained root access
through a security hole in any of those areas could potentially gain access to the Kerberos database.

Install and configure the primary KDC

Install Kerberos either from the OS-provided packages or from the source (See do_build).

Note: For the purpose of this document we will use the following names:

kerberos.mit.edu - primary KDC
kerberos-1.mit.edu - replica KDC
ATHENA.MIT.EDU - realm name
.k5.ATHENA.MIT.EDU - stash file
admin/admin - admin principal

See MIT Kerberos defaults for the default names and locations of the relevant to this topic files. Adjust the names and
paths to your system environment.

1

Kerberos Administration Guide, Release 1.22.1

Edit KDC configuration files

Modify the configuration files, krb5.conf and kdc.conf , to reflect the correct information (such as domain-realm map-
pings and Kerberos servers names) for your realm. (See MIT Kerberos defaults for the recommended default locations
for these files).

Most of the tags in the configuration have default values that will work well for most sites. There are some tags in the
krb5.conf file whose values must be specified, and this section will explain those.

If the locations for these configuration files differs from the default ones, set KRB5_CONFIG and
KRB5_KDC_PROFILE environment variables to point to the krb5.conf and kdc.conf respectively. For example:

export KRB5_CONFIG=/yourdir/krb5.conf
export KRB5_KDC_PROFILE=/yourdir/kdc.conf

krb5.conf

If you are not using DNS TXT records (see Mapping hostnames onto Kerberos realms), you must specify the de-
fault_realm in the [libdefaults] section. If you are not using DNS URI or SRV records (see Hostnames for KDCs
and KDC Discovery), you must include the kdc tag for each realm in the [realms] section. To communicate with the
kadmin server in each realm, the admin_server tag must be set in the [realms] section.

An example krb5.conf file:

[libdefaults]
default_realm = ATHENA.MIT.EDU

[realms]
ATHENA.MIT.EDU = {

kdc = kerberos.mit.edu
kdc = kerberos-1.mit.edu
admin_server = kerberos.mit.edu

}

kdc.conf

The kdc.conf file can be used to control the listening ports of the KDC and kadmind, as well as realm-specific defaults,
the database type and location, and logging.

An example kdc.conf file:

[kdcdefaults]
kdc_listen = 88
kdc_tcp_listen = 88

[realms]
ATHENA.MIT.EDU = {

kadmind_port = 749
max_life = 12h 0m 0s
max_renewable_life = 7d 0h 0m 0s
master_key_type = aes256-cts
supported_enctypes = aes256-cts:normal aes128-cts:normal
If the default location does not suit your setup,

(continues on next page)

2 Chapter 1. Installation guide

Kerberos Administration Guide, Release 1.22.1

(continued from previous page)

explicitly configure the following values:
database_name = /var/krb5kdc/principal
key_stash_file = /var/krb5kdc/.k5.ATHENA.MIT.EDU
acl_file = /var/krb5kdc/kadm5.acl

}

[logging]
By default, the KDC and kadmind will log output using
syslog. You can instead send log output to files like this:
kdc = FILE:/var/log/krb5kdc.log
admin_server = FILE:/var/log/kadmin.log
default = FILE:/var/log/krb5lib.log

Replace ATHENA.MIT.EDU and kerberos.mit.edu with the name of your Kerberos realm and server respectively.

Note: You have to have write permission on the target directories (these directories must exist) used by
database_name, key_stash_file, and acl_file.

Create the KDC database

You will use the kdb5_util command on the primary KDC to create the Kerberos database and the optional
stash_definition.

Note: If you choose not to install a stash file, the KDC will prompt you for the master key each time it starts up. This
means that the KDC will not be able to start automatically, such as after a system reboot.

kdb5_util will prompt you for the master password for the Kerberos database. This password can be any string. A good
password is one you can remember, but that no one else can guess. Examples of bad passwords are words that can be
found in a dictionary, any common or popular name, especially a famous person (or cartoon character), your username
in any form (e.g., forward, backward, repeated twice, etc.), and any of the sample passwords that appear in this manual.
One example of a password which might be good if it did not appear in this manual is “MITiys4K5!”, which represents
the sentence “MIT is your source for Kerberos 5!” (It’s the first letter of each word, substituting the numeral “4” for the
word “for”, and includes the punctuation mark at the end.)

The following is an example of how to create a Kerberos database and stash file on the primary KDC, using the kdb5_util
command. Replace ATHENA.MIT.EDU with the name of your Kerberos realm:

shell% kdb5_util create -r ATHENA.MIT.EDU -s

Initializing database '/usr/local/var/krb5kdc/principal' for realm 'ATHENA.MIT.EDU',
master key name 'K/M@ATHENA.MIT.EDU'
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key: <= Type the master password.
Re-enter KDC database master key to verify: <= Type it again.
shell%

This will create five files in LOCALSTATEDIR/krb5kdc (or at the locations specified in kdc.conf):

• two Kerberos database files, principal, and principal.ok

1.1. Contents 3

Kerberos Administration Guide, Release 1.22.1

• the Kerberos administrative database file, principal.kadm5

• the administrative database lock file, principal.kadm5.lock

• the stash file, in this example .k5.ATHENA.MIT.EDU. If you do not want a stash file, run the above command
without the -s option.

For more information on administrating Kerberos database see Operations on the Kerberos database.

Add administrators to the ACL file

Next, you need create an Access Control List (ACL) file and put the Kerberos principal of at least one of the admin-
istrators into it. This file is used by the kadmind daemon to control which principals may view and make privileged
modifications to the Kerberos database files. The ACL filename is determined by the acl_file variable in kdc.conf ; the
default is LOCALSTATEDIR/krb5kdc/kadm5.acl.

For more information on Kerberos ACL file see kadm5.acl.

Add administrators to the Kerberos database

Next you need to add administrative principals (i.e., principals who are allowed to administer Kerberos database)
to the Kerberos database. You must add at least one principal now to allow communication between the Kerberos
administration daemon kadmind and the kadmin program over the network for further administration. To do this, use
the kadmin.local utility on the primary KDC. kadmin.local is designed to be run on the primary KDC host without
using Kerberos authentication to an admin server; instead, it must have read and write access to the Kerberos database
on the local filesystem.

The administrative principals you create should be the ones you added to the ACL file (see Add administrators to the
ACL file).

In the following example, the administrative principal admin/admin is created:

shell% kadmin.local

kadmin.local: addprinc admin/admin@ATHENA.MIT.EDU

No policy specified for "admin/admin@ATHENA.MIT.EDU";
assigning "default".
Enter password for principal admin/admin@ATHENA.MIT.EDU: <= Enter a password.
Re-enter password for principal admin/admin@ATHENA.MIT.EDU: <= Type it again.
Principal "admin/admin@ATHENA.MIT.EDU" created.
kadmin.local:

Start the Kerberos daemons on the primary KDC

At this point, you are ready to start the Kerberos KDC (krb5kdc) and administrative daemons on the primary KDC. To
do so, type:

shell% krb5kdc
shell% kadmind

Each server daemon will fork and run in the background.

4 Chapter 1. Installation guide

Kerberos Administration Guide, Release 1.22.1

Note: Assuming you want these daemons to start up automatically at boot time, you can add them to the KDC’s
/etc/rc or /etc/inittab file. You need to have a stash_definition in order to do this.

You can verify that they started properly by checking for their startup messages in the logging locations you defined in
krb5.conf (see [logging]). For example:

shell% tail /var/log/krb5kdc.log
Dec 02 12:35:47 beeblebrox krb5kdc[3187](info): commencing operation
shell% tail /var/log/kadmin.log
Dec 02 12:35:52 beeblebrox kadmind[3189](info): starting

Any errors the daemons encounter while starting will also be listed in the logging output.

As an additional verification, check if kinit(1) succeeds against the principals that you have created on the previous step
(Add administrators to the Kerberos database). Run:

shell% kinit admin/admin@ATHENA.MIT.EDU

Install the replica KDCs

You are now ready to start configuring the replica KDCs.

Note: Assuming you are setting the KDCs up so that you can easily switch the primary KDC with one of the replicas,
you should perform each of these steps on the primary KDC as well as the replica KDCs, unless these instructions
specify otherwise.

Create host keytabs for replica KDCs

Each KDC needs a host key in the Kerberos database. These keys are used for mutual authentication when propagating
the database dump file from the primary KDC to the secondary KDC servers.

On the primary KDC, connect to administrative interface and create the host principal for each of the KDCs’ host
services. For example, if the primary KDC were called kerberos.mit.edu, and you had a replica KDC named
kerberos-1.mit.edu, you would type the following:

shell% kadmin
kadmin: addprinc -randkey host/kerberos.mit.edu
No policy specified for "host/kerberos.mit.edu@ATHENA.MIT.EDU"; assigning "default"
Principal "host/kerberos.mit.edu@ATHENA.MIT.EDU" created.

kadmin: addprinc -randkey host/kerberos-1.mit.edu
No policy specified for "host/kerberos-1.mit.edu@ATHENA.MIT.EDU"; assigning "default"
Principal "host/kerberos-1.mit.edu@ATHENA.MIT.EDU" created.

It is not strictly necessary to have the primary KDC server in the Kerberos database, but it can be handy if you want to
be able to swap the primary KDC with one of the replicas.

Next, extract host random keys for all participating KDCs and store them in each host’s default keytab file. Ideally,
you should extract each keytab locally on its own KDC. If this is not feasible, you should use an encrypted session to
send them across the network. To extract a keytab directly on a replica KDC called kerberos-1.mit.edu, you would
execute the following command:

1.1. Contents 5

Kerberos Administration Guide, Release 1.22.1

kadmin: ktadd host/kerberos-1.mit.edu
Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption

type aes256-cts-hmac-sha1-96 added to keytab FILE:/etc/krb5.keytab.
Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption

type aes128-cts-hmac-sha1-96 added to keytab FILE:/etc/krb5.keytab.
Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption

type aes256-cts-hmac-sha384-192 added to keytab FILE:/etc/krb5.keytab.
Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption

type arcfour-hmac added to keytab FILE:/etc/krb5.keytab.

If you are instead extracting a keytab for the replica KDC called kerberos-1.mit.edu on the primary KDC, you
should use a dedicated temporary keytab file for that machine’s keytab:

kadmin: ktadd -k /tmp/kerberos-1.keytab host/kerberos-1.mit.edu
Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption

type aes256-cts-hmac-sha1-96 added to keytab FILE:/etc/krb5.keytab.
Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption

type aes128-cts-hmac-sha1-96 added to keytab FILE:/etc/krb5.keytab.

The file /tmp/kerberos-1.keytab can then be installed as /etc/krb5.keytab on the host kerberos-1.mit.edu.

Configure replica KDCs

Database propagation copies the contents of the primary’s database, but does not propagate configuration files, stash
files, or the kadm5 ACL file. The following files must be copied by hand to each replica (see MIT Kerberos defaults
for the default locations for these files):

• krb5.conf

• kdc.conf

• kadm5.acl

• master key stash file

Move the copied files into their appropriate directories, exactly as on the primary KDC. kadm5.acl is only needed to
allow a replica to swap with the primary KDC.

The database is propagated from the primary KDC to the replica KDCs via the kpropd daemon. You must explicitly
specify the principals which are allowed to provide Kerberos dump updates on the replica machine with a new database.
Create a file named kpropd.acl in the KDC state directory containing the host principals for each of the KDCs:

host/kerberos.mit.edu@ATHENA.MIT.EDU
host/kerberos-1.mit.edu@ATHENA.MIT.EDU

Note: If you expect that the primary and replica KDCs will be switched at some point of time, list the host principals
from all participating KDC servers in kpropd.acl files on all of the KDCs. Otherwise, you only need to list the primary
KDC’s host principal in the kpropd.acl files of the replica KDCs.

Then, add the following line to /etc/inetd.conf on each KDC (adjust the path to kpropd):

krb5_prop stream tcp nowait root /usr/local/sbin/kpropd kpropd

You also need to add the following line to /etc/services on each KDC, if it is not already present (assuming that
the default port is used):

6 Chapter 1. Installation guide

Kerberos Administration Guide, Release 1.22.1

krb5_prop 754/tcp # Kerberos replica propagation

Restart inetd daemon.

Alternatively, start kpropd as a stand-alone daemon. This is required when incremental propagation is enabled.

Now that the replica KDC is able to accept database propagation, you’ll need to propagate the database from the primary
server.

NOTE: Do not start the replica KDC yet; you still do not have a copy of the primary’s database.

Propagate the database to each replica KDC

First, create a dump file of the database on the primary KDC, as follows:

shell% kdb5_util dump /usr/local/var/krb5kdc/replica_datatrans

Then, manually propagate the database to each replica KDC, as in the following example:

shell% kprop -f /usr/local/var/krb5kdc/replica_datatrans kerberos-1.mit.edu

Database propagation to kerberos-1.mit.edu: SUCCEEDED

You will need a script to dump and propagate the database. The following is an example of a Bourne shell script that
will do this.

Note: Remember that you need to replace /usr/local/var/krb5kdc with the name of the KDC state directory.

#!/bin/sh

kdclist = "kerberos-1.mit.edu kerberos-2.mit.edu"

kdb5_util dump /usr/local/var/krb5kdc/replica_datatrans

for kdc in $kdclist
do

kprop -f /usr/local/var/krb5kdc/replica_datatrans $kdc
done

You will need to set up a cron job to run this script at the intervals you decided on earlier (see Database propagation).

Now that the replica KDC has a copy of the Kerberos database, you can start the krb5kdc daemon:

shell% krb5kdc

As with the primary KDC, you will probably want to add this command to the KDCs’ /etc/rc or /etc/inittab
files, so they will start the krb5kdc daemon automatically at boot time.

1.1. Contents 7

Kerberos Administration Guide, Release 1.22.1

Propagation failed?

You may encounter the following error messages. For a more detailed discussion on possible causes and solutions click
on the error link to be redirected to Troubleshooting section.

1. kprop: No route to host while connecting to server

2. kprop: Connection refused while connecting to server

3. kprop: Server rejected authentication (during sendauth exchange) while authenticating to server

Add Kerberos principals to the database

Once your KDCs are set up and running, you are ready to use kadmin to load principals for your users, hosts, and other
services into the Kerberos database. This procedure is described fully in Principals.

You may occasionally want to use one of your replica KDCs as the primary. This might happen if you are upgrading
the primary KDC, or if your primary KDC has a disk crash. See the following section for the instructions.

Switching primary and replica KDCs

You may occasionally want to use one of your replica KDCs as the primary. This might happen if you are upgrading
the primary KDC, or if your primary KDC has a disk crash.

Assuming you have configured all of your KDCs to be able to function as either the primary KDC or a replica KDC
(as this document recommends), all you need to do to make the changeover is:

If the primary KDC is still running, do the following on the old primary KDC:

1. Kill the kadmind process.

2. Disable the cron job that propagates the database.

3. Run your database propagation script manually, to ensure that the replicas all have the latest copy of the database
(see Propagate the database to each replica KDC).

On the new primary KDC:

1. Start the kadmind daemon (see Start the Kerberos daemons on the primary KDC).

2. Set up the cron job to propagate the database (see Propagate the database to each replica KDC).

3. Switch the CNAMEs of the old and new primary KDCs. If you can’t do this, you’ll need to change the krb5.conf
file on every client machine in your Kerberos realm.

Incremental database propagation

If you expect your Kerberos database to become large, you may wish to set up incremental propagation to replica KDCs.
See Incremental database propagation for details.

8 Chapter 1. Installation guide

Kerberos Administration Guide, Release 1.22.1

1.1.2 Installing and configuring UNIX client machines

The Kerberized client programs include kinit(1), klist(1), kdestroy(1), and kpasswd(1). All of these programs are in
the directory BINDIR.

You can often integrate Kerberos with the login system on client machines, typically through the use of PAM. The
details vary by operating system, and should be covered in your operating system’s documentation. If you do this, you
will need to make sure your users know to use their Kerberos passwords when they log in.

You will also need to educate your users to use the ticket management programs kinit, klist, and kdestroy. If you do not
have Kerberos password changing integrated into the native password program (again, typically through PAM), you
will need to educate users to use kpasswd in place of its non-Kerberos counterparts passwd.

Client machine configuration files

Each machine running Kerberos should have a krb5.conf file. At a minimum, it should define a default_realm setting
in [libdefaults]. If you are not using DNS SRV records (Hostnames for KDCs) or URI records (KDC Discovery), it
must also contain a [realms] section containing information for your realm’s KDCs.

Consider setting rdns to false in order to reduce your dependence on precisely correct DNS information for service
hostnames. Turning this flag off means that service hostnames will be canonicalized through forward name resolution
(which adds your domain name to unqualified hostnames, and resolves CNAME records in DNS), but not through
reverse address lookup. The default value of this flag is true for historical reasons only.

If you anticipate users frequently logging into remote hosts (e.g., using ssh) using forwardable credentials, consider
setting forwardable to true so that users obtain forwardable tickets by default. Otherwise users will need to use kinit
-f to get forwardable tickets.

Consider adjusting the ticket_lifetime setting to match the likely length of sessions for your users. For instance, if
most of your users will be logging in for an eight-hour workday, you could set the default to ten hours so that tickets
obtained in the morning expire shortly after the end of the workday. Users can still manually request longer tickets
when necessary, up to the maximum allowed by each user’s principal record on the KDC.

If a client host may access services in different realms, it may be useful to define a [domain_realm] mapping so that
clients know which hosts belong to which realms. However, if your clients and KDC are running release 1.7 or later, it
is also reasonable to leave this section out on client machines and just define it in the KDC’s krb5.conf.

1.1.3 UNIX Application Servers

An application server is a host that provides one or more services over the network. Application servers can be “secure”
or “insecure.” A “secure” host is set up to require authentication from every client connecting to it. An “insecure” host
will still provide Kerberos authentication, but will also allow unauthenticated clients to connect.

If you have Kerberos V5 installed on all of your client machines, MIT recommends that you make your hosts secure,
to take advantage of the security that Kerberos authentication affords. However, if you have some clients that do not
have Kerberos V5 installed, you can run an insecure server, and still take advantage of Kerberos V5’s single sign-on
capability.

1.1. Contents 9

Kerberos Administration Guide, Release 1.22.1

The keytab file

All Kerberos server machines need a keytab file to authenticate to the KDC. By default on UNIX-like systems this file
is named DEFKTNAME. The keytab file is an local copy of the host’s key. The keytab file is a potential point of entry
for a break-in, and if compromised, would allow unrestricted access to its host. The keytab file should be readable only
by root, and should exist only on the machine’s local disk. The file should not be part of any backup of the machine,
unless access to the backup data is secured as tightly as access to the machine’s root password.

In order to generate a keytab for a host, the host must have a principal in the Kerberos database. The procedure for
adding hosts to the database is described fully in Principals. (See Create host keytabs for replica KDCs for a brief
description.) The keytab is generated by running kadmin and issuing the ktadd command.

For example, to generate a keytab file to allow the host trillium.mit.edu to authenticate for the services host, ftp,
and pop, the administrator joeadmin would issue the command (on trillium.mit.edu):

trillium% kadmin
Authenticating as principal root/admin@ATHENA.MIT.EDU with password.
Password for root/admin@ATHENA.MIT.EDU:
kadmin: ktadd host/trillium.mit.edu ftp/trillium.mit.edu pop/trillium.mit.edu
Entry for principal host/trillium.mit.edu@ATHENA.MIT.EDU with kvno 3, encryption type␣
→˓aes256-cts-hmac-sha384-192 added to keytab FILE:/etc/krb5.keytab.
kadmin: Entry for principal ftp/trillium.mit.edu@ATHENA.MIT.EDU with kvno 3, encryption␣
→˓type aes256-cts-hmac-sha384-192 added to keytab FILE:/etc/krb5.keytab.
kadmin: Entry for principal pop/trillium.mit.edu@ATHENA.MIT.EDU with kvno 3, encryption␣
→˓type aes256-cts-hmac-sha384-192 added to keytab FILE:/etc/krb5.keytab.
kadmin: quit
trillium%

If you generate the keytab file on another host, you need to get a copy of the keytab file onto the destination host
(trillium, in the above example) without sending it unencrypted over the network.

Some advice about secure hosts

Kerberos V5 can protect your host from certain types of break-ins, but it is possible to install Kerberos V5 and still
leave your host vulnerable to attack. Obviously an installation guide is not the place to try to include an exhaustive list
of countermeasures for every possible attack, but it is worth noting some of the larger holes and how to close them.

We recommend that backups of secure machines exclude the keytab file (DEFKTNAME). If this is not possible, the
backups should at least be done locally, rather than over a network, and the backup tapes should be physically secured.

The keytab file and any programs run by root, including the Kerberos V5 binaries, should be kept on local disk. The
keytab file should be readable only by root.

1.2 Additional references

1. Debian: Setting up MIT Kerberos 5

2. Solaris: Configuring the Kerberos Service

10 Chapter 1. Installation guide

http://techpubs.spinlocksolutions.com/dklar/kerberos.html
https://docs.oracle.com/cd/E19253-01/816-4557/6maosrjv2/index.html

CHAPTER

TWO

CONFIGURATION FILES

Kerberos uses configuration files to allow administrators to specify settings on a per-machine basis. krb5.conf applies
to all applications using the Kerboros library, on clients and servers. For KDC-specific applications, additional settings
can be specified in kdc.conf ; the two files are merged into a configuration profile used by applications accessing the
KDC database directly. kadm5.acl is also only used on the KDC, it controls permissions for modifying the KDC
database.

2.1 Contents

2.1.1 krb5.conf

The krb5.conf file contains Kerberos configuration information, including the locations of KDCs and admin servers
for the Kerberos realms of interest, defaults for the current realm and for Kerberos applications, and mappings of
hostnames onto Kerberos realms. Normally, you should install your krb5.conf file in the directory /etc. You can
override the default location by setting the environment variable KRB5_CONFIG. Multiple colon-separated filenames
may be specified in KRB5_CONFIG; all files which are present will be read. Starting in release 1.14, directory names
can also be specified in KRB5_CONFIG; all files within the directory whose names consist solely of alphanumeric
characters, dashes, or underscores will be read.

Structure

The krb5.conf file is set up in the style of a Windows INI file. Lines beginning with ‘#’ or ‘;’ (possibly after initial
whitespace) are ignored as comments. Sections are headed by the section name, in square brackets. Each section may
contain zero or more relations, of the form:

foo = bar

or:

fubar = {
foo = bar
baz = quux

}

The krb5.conf file can include other files using either of the following directives at the beginning of a line:

include FILENAME
includedir DIRNAME

11

Kerberos Administration Guide, Release 1.22.1

FILENAME or DIRNAME should be an absolute path. The named file or directory must exist and be readable. Including
a directory includes all files within the directory whose names consist solely of alphanumeric characters, dashes, or
underscores. Starting in release 1.15, files with names ending in “.conf” are also included, unless the name begins with
“.”. Included profile files are syntactically independent of their parents, so each included file must begin with a section
header. Starting in release 1.17, files are read in alphanumeric order; in previous releases, they may be read in any
order.

Placing a ‘*’ after the closing bracket of a section name indicates that the section is final, meaning that if the same
section appears again later, it will be ignored. A subsection can be marked as final by placing a ‘*’ after either the tag
name or the closing brace. A relation can be marked as final by placing a ‘*’ after the tag name. Prior to release 1.22,
only sections and subsections can be marked as final, and the flag only causes values to be ignored if they appear in
later files specified in KRB5_CONFIG, not if they appear later within the same file or an included file.

The krb5.conf file can specify that configuration should be obtained from a loadable module, rather than the file itself,
using the following directive at the beginning of a line before any section headers:

module MODULEPATH:RESIDUAL

MODULEPATH may be relative to the library path of the krb5 installation, or it may be an absolute path. RESIDUAL
is provided to the module at initialization time. If krb5.conf uses a module directive, kdc.conf should also use one if it
exists.

Sections

The krb5.conf file may contain the following sections:

[libdefaults] Settings used by the Kerberos V5 library
[realms] Realm-specific contact information and settings
[domain_realm] Maps server hostnames to Kerberos realms
[capaths] Authentication paths for non-hierarchical cross-realm
[appdefaults] Settings used by some Kerberos V5 applications
[plugins] Controls plugin module registration

Additionally, krb5.conf may include any of the relations described in kdc.conf , but it is not a recommended practice.

[libdefaults]

The libdefaults section may contain any of the following relations:

allow_des3
Permit the KDC to issue tickets with des3-cbc-sha1 session keys. In future releases, this flag will allow des3-
cbc-sha1 to be used at all. The default value for this tag is false. (Added in release 1.21.)

allow_rc4
Permit the KDC to issue tickets with arcfour-hmac session keys. In future releases, this flag will allow arcfour-
hmac to be used at all. The default value for this tag is false. (Added in release 1.21.)

allow_weak_crypto
If this flag is set to false, then weak encryption types (as noted in Encryption types in kdc.conf) will be filtered
out of the lists default_tgs_enctypes, default_tkt_enctypes, and permitted_enctypes. The default value for
this tag is false.

canonicalize
If this flag is set to true, initial ticket requests to the KDC will request canonicalization of the client principal

12 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.22.1

name, and answers with different client principals than the requested principal will be accepted. The default
value is false.

ccache_type
This parameter determines the format of credential cache types created by kinit(1) or other programs. The default
value is 4, which represents the most current format. Smaller values can be used for compatibility with very old
implementations of Kerberos which interact with credential caches on the same host.

clockskew
Sets the maximum allowable amount of clockskew in seconds that the library will tolerate before assuming that
a Kerberos message is invalid. The default value is 300 seconds, or five minutes.

The clockskew setting is also used when evaluating ticket start and expiration times. For example, tickets that
have reached their expiration time can still be used (and renewed if they are renewable tickets) if they have been
expired for a shorter duration than the clockskew setting.

default_ccache_name
This relation specifies the name of the default credential cache. The default is DEFCCNAME. This relation is
subject to parameter expansion (see below). New in release 1.11.

default_client_keytab_name
This relation specifies the name of the default keytab for obtaining client credentials. The default is DEFCKT-
NAME. This relation is subject to parameter expansion (see below). New in release 1.11.

default_keytab_name
This relation specifies the default keytab name to be used by application servers such as sshd. The default is
DEFKTNAME. This relation is subject to parameter expansion (see below).

default_rcache_name
This relation specifies the name of the default replay cache. The default is dfl:. This relation is subject to
parameter expansion (see below). New in release 1.18.

default_realm
Identifies the default Kerberos realm for the client. Set its value to your Kerberos realm. If this value is not set,
then a realm must be specified with every Kerberos principal when invoking programs such as kinit(1).

default_tgs_enctypes
Identifies the supported list of session key encryption types that the client should request when making
a TGS-REQ, in order of preference from highest to lowest. The list may be delimited with commas or
whitespace. See Encryption types in kdc.conf for a list of the accepted values for this tag. Starting in
release 1.18, the default value is the value of permitted_enctypes. For previous releases or if permit-
ted_enctypes is not set, the default value is aes256-cts-hmac-sha1-96 aes128-cts-hmac-sha1-96
aes256-cts-hmac-sha384-192 aes128-cts-hmac-sha256-128 des3-cbc-sha1 arcfour-hmac-md5
camellia256-cts-cmac camellia128-cts-cmac.

Do not set this unless required for specific backward compatibility purposes; stale values of this setting can
prevent clients from taking advantage of new stronger enctypes when the libraries are upgraded.

default_tkt_enctypes
Identifies the supported list of session key encryption types that the client should request when making an
AS-REQ, in order of preference from highest to lowest. The format is the same as for default_tgs_enctypes.
Starting in release 1.18, the default value is the value of permitted_enctypes. For previous releases or if per-
mitted_enctypes is not set, the default value is aes256-cts-hmac-sha1-96 aes128-cts-hmac-sha1-96
aes256-cts-hmac-sha384-192 aes128-cts-hmac-sha256-128 des3-cbc-sha1 arcfour-hmac-md5
camellia256-cts-cmac camellia128-cts-cmac.

Do not set this unless required for specific backward compatibility purposes; stale values of this setting can
prevent clients from taking advantage of new stronger enctypes when the libraries are upgraded.

2.1. Contents 13

Kerberos Administration Guide, Release 1.22.1

dns_canonicalize_hostname
Indicate whether name lookups will be used to canonicalize hostnames for use in service principal names. Setting
this flag to false can improve security by reducing reliance on DNS, but means that short hostnames will not
be canonicalized to fully-qualified hostnames. If this option is set to fallback (new in release 1.18), DNS
canonicalization will only be performed the server hostname is not found with the original name when requesting
credentials. The default value is true.

dns_lookup_kdc
Indicate whether DNS SRV records should be used to locate the KDCs and other servers for a realm, if they are
not listed in the krb5.conf information for the realm. (Note that the admin_server entry must be in the krb5.conf
realm information in order to contact kadmind, because the DNS implementation for kadmin is incomplete.)

Enabling this option does open up a type of denial-of-service attack, if someone spoofs the DNS records and
redirects you to another server. However, it’s no worse than a denial of service, because that fake KDC will
be unable to decode anything you send it (besides the initial ticket request, which has no encrypted data), and
anything the fake KDC sends will not be trusted without verification using some secret that it won’t know.

dns_lookup_realm
Indicate whether DNS TXT records should be used to map hostnames to realm names for hostnames not listed
in the [domain_realm] section, and to determine the default realm if default_realm is not set. The default value
is false.

dns_uri_lookup
Indicate whether DNS URI records should be used to locate the KDCs and other servers for a realm, if they are
not listed in the krb5.conf information for the realm. SRV records are used as a fallback if no URI records were
found. The default value is true. New in release 1.15.

enforce_ok_as_delegate
If this flag to true, GSSAPI credential delegation will be disabled when the ok-as-delegate flag is not set
in the service ticket. If this flag is false, the ok-as-delegate ticket flag is only enforced when an application
specifically requests enforcement. The default value is false.

err_fmt
This relation allows for custom error message formatting. If a value is set, error messages will be formatted by
substituting a normal error message for %M and an error code for %C in the value.

extra_addresses
This allows a computer to use multiple local addresses, in order to allow Kerberos to work in a network that uses
NATs while still using address-restricted tickets. The addresses should be in a comma-separated list. This option
has no effect if noaddresses is true.

forwardable
If this flag is true, initial tickets will be forwardable by default, if allowed by the KDC. The default value is false.

ignore_acceptor_hostname
When accepting GSSAPI or krb5 security contexts for host-based service principals, ignore any hostname passed
by the calling application, and allow clients to authenticate to any service principal in the keytab matching the
service name and realm name (if given). This option can improve the administrative flexibility of server appli-
cations on multihomed hosts, but could compromise the security of virtual hosting environments. The default
value is false. New in release 1.10.

k5login_authoritative
If this flag is true, principals must be listed in a local user’s k5login file to be granted login access, if a .k5login(5)
file exists. If this flag is false, a principal may still be granted login access through other mechanisms even if a
k5login file exists but does not list the principal. The default value is true.

k5login_directory
If set, the library will look for a local user’s k5login file within the named directory, with a filename corresponding

14 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.22.1

to the local username. If not set, the library will look for k5login files in the user’s home directory, with the
filename .k5login. For security reasons, .k5login files must be owned by the local user or by root.

kcm_mach_service
On macOS only, determines the name of the bootstrap service used to contact the KCM daemon for the KCM
credential cache type. If the value is -, Mach RPC will not be used to contact the KCM daemon. The default
value is org.h5l.kcm.

kcm_socket
Determines the path to the Unix domain socket used to access the KCM daemon for the KCM credential cache
type. If the value is -, Unix domain sockets will not be used to contact the KCM daemon. The default value is
/var/run/.heim_org.h5l.kcm-socket.

kdc_default_options
Default KDC options (Xored for multiple values) when requesting initial tickets. By default it is set to
0x00000010 (KDC_OPT_RENEWABLE_OK).

kdc_timesync
Accepted values for this relation are 1 or 0. If it is nonzero, client machines will compute the difference between
their time and the time returned by the KDC in the timestamps in the tickets and use this value to correct for an
inaccurate system clock when requesting service tickets or authenticating to services. This corrective factor is
only used by the Kerberos library; it is not used to change the system clock. The default value is 1.

noaddresses
If this flag is true, requests for initial tickets will not be made with address restrictions set, allowing the tickets
to be used across NATs. The default value is true.

permitted_enctypes
Identifies the encryption types that servers will permit for session keys and for ticket and authentica-
tor encryption, ordered by preference from highest to lowest. Starting in release 1.18, this tag also acts
as the default value for default_tgs_enctypes and default_tkt_enctypes. The default value for this
tag is aes256-cts-hmac-sha1-96 aes128-cts-hmac-sha1-96 aes256-cts-hmac-sha384-192
aes128-cts-hmac-sha256-128 des3-cbc-sha1 arcfour-hmac-md5 camellia256-cts-cmac
camellia128-cts-cmac.

plugin_base_dir
If set, determines the base directory where krb5 plugins are located. The default value is the krb5/plugins
subdirectory of the krb5 library directory. This relation is subject to parameter expansion (see below) in release
1.17 and later.

preferred_preauth_types
This allows you to set the preferred preauthentication types which the client will attempt before others which may
be advertised by a KDC. The default value for this setting is “17, 16, 15, 14”, which forces libkrb5 to attempt to
use PKINIT if it is supported.

proxiable
If this flag is true, initial tickets will be proxiable by default, if allowed by the KDC. The default value is false.

qualify_shortname
If this string is set, it determines the domain suffix for single-component hostnames when DNS canonicalization
is not used (either because dns_canonicalize_hostname is false or because forward canonicalization failed). The
default value is the first search domain of the system’s DNS configuration. To disable qualification of shortnames,
set this relation to the empty string with qualify_shortname = "". (New in release 1.18.)

rdns
If this flag is true, reverse name lookup will be used in addition to forward name lookup to canonicalizing
hostnames for use in service principal names. If dns_canonicalize_hostname is set to false, this flag has no
effect. The default value is true.

2.1. Contents 15

Kerberos Administration Guide, Release 1.22.1

realm_try_domains
Indicate whether a host’s domain components should be used to determine the Kerberos realm of the host. The
value of this variable is an integer: -1 means not to search, 0 means to try the host’s domain itself, 1 means to also
try the domain’s immediate parent, and so forth. The library’s usual mechanism for locating Kerberos realms is
used to determine whether a domain is a valid realm, which may involve consulting DNS if dns_lookup_kdc is
set. The default is not to search domain components.

renew_lifetime
(duration string.) Sets the default renewable lifetime for initial ticket requests. The default value is 0.

request_timeout
(duration string.) Sets the maximum total time for KDC and password change requests. This timeout does not
affect the intervals between requests, so setting a low timeout may result in fewer requests being attempted and/or
some servers not being contacted. A value of 0 indicates no specific maximum, in which case requests will time
out if no server responds after several tries. The default value is 0. (New in release 1.22.)

spake_preauth_groups
A whitespace or comma-separated list of words which specifies the groups allowed for SPAKE preauthentication.
The possible values are:

edwards25519 Edwards25519 curve (RFC 7748)
P-256 NIST P-256 curve (RFC 5480)
P-384 NIST P-384 curve (RFC 5480)
P-521 NIST P-521 curve (RFC 5480)

The default value for the client is edwards25519. The default value for the KDC is empty. New in release 1.17.

ticket_lifetime
(duration string.) Sets the default lifetime for initial ticket requests. The default value is 1 day.

udp_preference_limit
When sending a message to the KDC, the library will try using TCP before UDP if the size of the message is
above udp_preference_limit. If the message is smaller than udp_preference_limit, then UDP will be tried
before TCP. Regardless of the size, both protocols will be tried if the first attempt fails.

verify_ap_req_nofail
If this flag is true, then an attempt to verify initial credentials will fail if the client machine does not have a keytab.
The default value is false.

client_aware_channel_bindings
If this flag is true, then all application protocol authentication requests will be flagged to indicate that the appli-
cation supports channel bindings when operating over a secure channel. The default value is false.

[realms]

Each tag in the [realms] section of the file is the name of a Kerberos realm. The value of the tag is a subsection with
relations that define the properties of that particular realm. For each realm, the following tags may be specified in the
realm’s subsection:

admin_server
Identifies the host where the administration server is running. Typically, this is the primary Kerberos server. This
tag must be given a value in order to communicate with the kadmind server for the realm.

auth_to_local
This tag allows you to set a general rule for mapping principal names to local user names. It will be used if there
is not an explicit mapping for the principal name that is being translated. The possible values are:

16 Chapter 2. Configuration Files

https://datatracker.ietf.org/doc/html/rfc7748.html
https://datatracker.ietf.org/doc/html/rfc5480.html
https://datatracker.ietf.org/doc/html/rfc5480.html
https://datatracker.ietf.org/doc/html/rfc5480.html

Kerberos Administration Guide, Release 1.22.1

RULE:exp
The local name will be formulated from exp.

The format for exp is [n:string](regexp)s/pattern/replacement/g. The integer n indicates how many compo-
nents the target principal should have. If this matches, then a string will be formed from string, substituting
the realm of the principal for $0 and the n’th component of the principal for $n (e.g., if the principal was
johndoe/admin then [2:$2$1foo] would result in the string adminjohndoefoo). If this string matches
regexp, then the s//[g] substitution command will be run over the string. The optional g will cause the
substitution to be global over the string, instead of replacing only the first match in the string.

DEFAULT
The principal name will be used as the local user name. If the principal has more than one component or
is not in the default realm, this rule is not applicable and the conversion will fail.

For example:

[realms]
ATHENA.MIT.EDU = {

auth_to_local = RULE:[2:$1](johndoe)s/^.*$/guest/
auth_to_local = RULE:[2:$1;$2](^.*;admin$)s/;admin$//
auth_to_local = RULE:[2:$2](^.*;root)s/^.*$/root/
auth_to_local = DEFAULT

}

would result in any principal without root or admin as the second component to be translated with the default
rule. A principal with a second component of admin will become its first component. root will be used as
the local name for any principal with a second component of root. The exception to these two rules are any
principals johndoe/*, which will always get the local name guest.

auth_to_local_names
This subsection allows you to set explicit mappings from principal names to local user names. The tag is the
mapping name, and the value is the corresponding local user name.

default_domain
This tag specifies the domain used to expand hostnames when translating Kerberos 4 service principals to Ker-
beros 5 principals (for example, when converting rcmd.hostname to host/hostname.domain).

disable_encrypted_timestamp
If this flag is true, the client will not perform encrypted timestamp preauthentication if requested by the KDC.
Setting this flag can help to prevent dictionary attacks by active attackers, if the realm’s KDCs support SPAKE
preauthentication or if initial authentication always uses another mechanism or always uses FAST. This flag
persists across client referrals during initial authentication. This flag does not prevent the KDC from offering
encrypted timestamp. New in release 1.17.

http_anchors
When KDCs and kpasswd servers are accessed through HTTPS proxies, this tag can be used to specify the
location of the CA certificate which should be trusted to issue the certificate for a proxy server. If left unspecified,
the system-wide default set of CA certificates is used.

The syntax for values is similar to that of values for the pkinit_anchors tag:

FILE: filename

filename is assumed to be the name of an OpenSSL-style ca-bundle file.

DIR: dirname

dirname is assumed to be an directory which contains CA certificates. All files in the directory will be examined;
if they contain certificates (in PEM format), they will be used.

ENV: envvar

2.1. Contents 17

Kerberos Administration Guide, Release 1.22.1

envvar specifies the name of an environment variable which has been set to a value conforming to one of the
previous values. For example, ENV:X509_PROXY_CA, where environment variable X509_PROXY_CA has been
set to FILE:/tmp/my_proxy.pem.

kdc
The name or address of a host running a KDC for the realm, or a UNIX domain socket path of a locally running
KDC. An optional port number, separated from the hostname by a colon, may be included. If the name or address
contains colons (for example, if it is an IPv6 address), enclose it in square brackets to distinguish the colon from
a port separator. For your computer to be able to communicate with the KDC for each realm, this tag must be
given a value in each realm subsection in the configuration file, or there must be DNS SRV records specifying
the KDCs.

kpasswd_server
The location of the password change server for the realm, using the same syntax as kdc. If there is no such entry,
DNS will be queried (unless forbidden by dns_lookup_kdc). Finally, port 464 on the admin_server host will
be tried.

master_kdc
The name for primary_kdc prior to release 1.19. Its value is used as a fallback if primary_kdc is not specified.

primary_kdc
Identifies the primary KDC(s). Currently, this tag is used in only one case: If an attempt to get credentials fails
because of an invalid password, the client software will attempt to contact the primary KDC, in case the user’s
password has just been changed, and the updated database has not been propagated to the replica servers yet.
New in release 1.19.

sitename
Specifies the name of the host’s site for the purpose of DNS-based KDC discovery for this realm. New in release
1.22.

v4_instance_convert
This subsection allows the administrator to configure exceptions to the default_domain mapping rule. It contains
V4 instances (the tag name) which should be translated to some specific hostname (the tag value) as the second
component in a Kerberos V5 principal name.

v4_realm
This relation is used by the krb524 library routines when converting a V5 principal name to a V4 principal name.
It is used when the V4 realm name and the V5 realm name are not the same, but still share the same principal
names and passwords. The tag value is the Kerberos V4 realm name.

[domain_realm]

The [domain_realm] section provides a translation from hostnames to Kerberos realms. Each tag is a domain name,
providing the mapping for that domain and all subdomains. If the tag begins with a period (.) then it applies only to
subdomains. The Kerberos realm may be identified either in the realms section or using DNS SRV records. Tag names
should be in lower case. For example:

[domain_realm]
crash.mit.edu = TEST.ATHENA.MIT.EDU
.dev.mit.edu = TEST.ATHENA.MIT.EDU
mit.edu = ATHENA.MIT.EDU

maps the host with the name crash.mit.edu into the TEST.ATHENA.MIT.EDU realm. The second entry maps all hosts
under the domain dev.mit.edu into the TEST.ATHENA.MIT.EDU realm, but not the host with the name dev.mit.
edu. That host is matched by the third entry, which maps the host mit.edu and all hosts under the domain mit.edu
that do not match a preceding rule into the realm ATHENA.MIT.EDU.

18 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.22.1

If no translation entry applies to a hostname used for a service principal for a service ticket request, the library will
try to get a referral to the appropriate realm from the client realm’s KDC. If that does not succeed, the host’s realm
is considered to be the hostname’s domain portion converted to uppercase, unless the realm_try_domains setting in
[libdefaults] causes a different parent domain to be used.

[capaths]

In order to perform direct (non-hierarchical) cross-realm authentication, configuration is needed to determine the au-
thentication paths between realms.

A client will use this section to find the authentication path between its realm and the realm of the server. The server
will use this section to verify the authentication path used by the client, by checking the transited field of the received
ticket.

There is a tag for each participating client realm, and each tag has subtags for each of the server realms. The value
of the subtags is an intermediate realm which may participate in the cross-realm authentication. The subtags may be
repeated if there is more then one intermediate realm. A value of “.” means that the two realms share keys directly, and
no intermediate realms should be allowed to participate.

Only those entries which will be needed on the client or the server need to be present. A client needs a tag for its local
realm with subtags for all the realms of servers it will need to authenticate to. A server needs a tag for each realm of
the clients it will serve, with a subtag of the server realm.

For example, ANL.GOV, PNL.GOV, and NERSC.GOV all wish to use the ES.NET realm as an intermediate realm. ANL
has a sub realm of TEST.ANL.GOV which will authenticate with NERSC.GOV but not PNL.GOV. The [capaths] section
for ANL.GOV systems would look like this:

[capaths]
ANL.GOV = {

TEST.ANL.GOV = .
PNL.GOV = ES.NET
NERSC.GOV = ES.NET
ES.NET = .

}
TEST.ANL.GOV = {

ANL.GOV = .
}
PNL.GOV = {

ANL.GOV = ES.NET
}
NERSC.GOV = {

ANL.GOV = ES.NET
}
ES.NET = {

ANL.GOV = .
}

The [capaths] section of the configuration file used on NERSC.GOV systems would look like this:

[capaths]
NERSC.GOV = {

ANL.GOV = ES.NET
TEST.ANL.GOV = ES.NET
TEST.ANL.GOV = ANL.GOV
PNL.GOV = ES.NET

(continues on next page)

2.1. Contents 19

Kerberos Administration Guide, Release 1.22.1

(continued from previous page)

ES.NET = .
}
ANL.GOV = {

NERSC.GOV = ES.NET
}
PNL.GOV = {

NERSC.GOV = ES.NET
}
ES.NET = {

NERSC.GOV = .
}
TEST.ANL.GOV = {

NERSC.GOV = ANL.GOV
NERSC.GOV = ES.NET

}

When a subtag is used more than once within a tag, clients will use the order of values to determine the path. The order
of values is not important to servers.

[appdefaults]

Each tag in the [appdefaults] section names a Kerberos V5 application or an option that is used by some Kerberos V5
application[s]. The value of the tag defines the default behaviors for that application.

For example:

[appdefaults]
telnet = {

ATHENA.MIT.EDU = {
option1 = false

}
}
telnet = {

option1 = true
option2 = true

}
ATHENA.MIT.EDU = {

option2 = false
}
option2 = true

The above four ways of specifying the value of an option are shown in order of decreasing precedence. In this example,
if telnet is running in the realm EXAMPLE.COM, it should, by default, have option1 and option2 set to true. However,
a telnet program in the realm ATHENA.MIT.EDU should have option1 set to false and option2 set to true. Any other
programs in ATHENA.MIT.EDU should have option2 set to false by default. Any programs running in other realms
should have option2 set to true.

The list of specifiable options for each application may be found in that application’s man pages. The application
defaults specified here are overridden by those specified in the realms section.

20 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.22.1

[plugins]

• pwqual interface

• kadm5_hook interface

• clpreauth and kdcpreauth interfaces

Tags in the [plugins] section can be used to register dynamic plugin modules and to turn modules on and off. Not every
krb5 pluggable interface uses the [plugins] section; the ones that do are documented here.

New in release 1.9.

Each pluggable interface corresponds to a subsection of [plugins]. All subsections support the same tags:

disable
This tag may have multiple values. If there are values for this tag, then the named modules will be disabled for
the pluggable interface.

enable_only
This tag may have multiple values. If there are values for this tag, then only the named modules will be enabled
for the pluggable interface.

module
This tag may have multiple values. Each value is a string of the form modulename:pathname, which causes the
shared object located at pathname to be registered as a dynamic module named modulename for the pluggable
interface. If pathname is not an absolute path, it will be treated as relative to the plugin_base_dir value from
[libdefaults].

For pluggable interfaces where module order matters, modules registered with a module tag normally come first, in
the order they are registered, followed by built-in modules in the order they are documented below. If enable_only
tags are used, then the order of those tags overrides the normal module order.

The following subsections are currently supported within the [plugins] section:

ccselect interface

The ccselect subsection controls modules for credential cache selection within a cache collection. In addition to any
registered dynamic modules, the following built-in modules exist (and may be disabled with the disable tag):

k5identity
Uses a .k5identity file in the user’s home directory to select a client principal

realm
Uses the service realm to guess an appropriate cache from the collection

hostname
If the service principal is host-based, uses the service hostname to guess an appropriate cache from the collection

2.1. Contents 21

Kerberos Administration Guide, Release 1.22.1

pwqual interface

The pwqual subsection controls modules for the password quality interface, which is used to reject weak passwords
when passwords are changed. The following built-in modules exist for this interface:

dict
Checks against the realm dictionary file

empty
Rejects empty passwords

hesiod
Checks against user information stored in Hesiod (only if Kerberos was built with Hesiod support)

princ
Checks against components of the principal name

kadm5_hook interface

The kadm5_hook interface provides plugins with information on principal creation, modification, password changes
and deletion. This interface can be used to write a plugin to synchronize MIT Kerberos with another database such as
Active Directory. No plugins are built in for this interface.

kadm5_auth interface

The kadm5_auth section (introduced in release 1.16) controls modules for the kadmin authorization interface, which
determines whether a client principal is allowed to perform a kadmin operation. The following built-in modules exist
for this interface:

acl
This module reads the kadm5.acl file, and authorizes operations which are allowed according to the rules in the
file.

self
This module authorizes self-service operations including password changes, creation of new random keys, fetch-
ing the client’s principal record or string attributes, and fetching the policy record associated with the client
principal.

clpreauth and kdcpreauth interfaces

The clpreauth and kdcpreauth interfaces allow plugin modules to provide client and KDC preauthentication mecha-
nisms. The following built-in modules exist for these interfaces:

pkinit
This module implements the PKINIT preauthentication mechanism.

encrypted_challenge
This module implements the encrypted challenge FAST factor.

encrypted_timestamp
This module implements the encrypted timestamp mechanism.

22 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.22.1

hostrealm interface

The hostrealm section (introduced in release 1.12) controls modules for the host-to-realm interface, which affects the
local mapping of hostnames to realm names and the choice of default realm. The following built-in modules exist for
this interface:

profile
This module consults the [domain_realm] section of the profile for authoritative host-to-realm mappings, and the
default_realm variable for the default realm.

dns
This module looks for DNS records for fallback host-to-realm mappings and the default realm. It only operates
if the dns_lookup_realm variable is set to true.

domain
This module applies heuristics for fallback host-to-realm mappings. It implements the realm_try_domains
variable, and uses the uppercased parent domain of the hostname if that does not produce a result.

localauth interface

The localauth section (introduced in release 1.12) controls modules for the local authorization interface, which affects
the relationship between Kerberos principals and local system accounts. The following built-in modules exist for this
interface:

default
This module implements the DEFAULT type for auth_to_local values.

rule
This module implements the RULE type for auth_to_local values.

names
This module looks for an auth_to_local_names mapping for the principal name.

auth_to_local
This module processes auth_to_local values in the default realm’s section, and applies the default method if no
auth_to_local values exist.

k5login
This module authorizes a principal to a local account according to the account’s .k5login(5) file.

an2ln
This module authorizes a principal to a local account if the principal name maps to the local account name.

certauth interface

The certauth section (introduced in release 1.16) controls modules for the certificate authorization interface, which
determines whether a certificate is allowed to preauthenticate a user via PKINIT. The following built-in modules exist
for this interface:

pkinit_san
This module authorizes the certificate if it contains a PKINIT Subject Alternative Name for the requested client
principal, or a Microsoft UPN SAN matching the principal if pkinit_allow_upn is set to true for the realm.

pkinit_eku
This module rejects the certificate if it does not contain an Extended Key Usage attribute consistent with the
pkinit_eku_checking value for the realm.

2.1. Contents 23

Kerberos Administration Guide, Release 1.22.1

dbmatch
This module authorizes or rejects the certificate according to whether it matches the pkinit_cert_match string
attribute on the client principal, if that attribute is present.

PKINIT options

Note: The following are PKINIT-specific options. These values may be specified in [libdefaults] as global defaults, or
within a realm-specific subsection of [libdefaults], or may be specified as realm-specific values in the [realms] section.
A realm-specific value overrides, not adds to, a generic [libdefaults] specification. The search order is:

1. realm-specific subsection of [libdefaults]:

[libdefaults]
EXAMPLE.COM = {

pkinit_anchors = FILE:/usr/local/example.com.crt
}

2. realm-specific value in the [realms] section:

[realms]
OTHERREALM.ORG = {

pkinit_anchors = FILE:/usr/local/otherrealm.org.crt
}

3. generic value in the [libdefaults] section:

[libdefaults]
pkinit_anchors = DIR:/usr/local/generic_trusted_cas/

Specifying PKINIT identity information

The syntax for specifying Public Key identity, trust, and revocation information for PKINIT is as follows:

FILE:filename[,keyfilename]
This option has context-specific behavior.

In pkinit_identity or pkinit_identities, filename specifies the name of a PEM-format file containing the user’s
certificate. If keyfilename is not specified, the user’s private key is expected to be in filename as well. Otherwise,
keyfilename is the name of the file containing the private key.

In pkinit_anchors or pkinit_pool, filename is assumed to be the name of an OpenSSL-style ca-bundle file.

DIR:dirname
This option has context-specific behavior.

In pkinit_identity or pkinit_identities, dirname specifies a directory with files named *.crt and *.key where
the first part of the file name is the same for matching pairs of certificate and private key files. When a file with
a name ending with .crt is found, a matching file ending with .key is assumed to contain the private key. If no
such file is found, then the certificate in the .crt is not used.

In pkinit_anchors or pkinit_pool, dirname is assumed to be an OpenSSL-style hashed CA directory where each
CA cert is stored in a file named hash-of-ca-cert.#. This infrastructure is encouraged, but all files in the
directory will be examined and if they contain certificates (in PEM format), they will be used.

24 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.22.1

In pkinit_revoke, dirname is assumed to be an OpenSSL-style hashed CA directory where each revocation list
is stored in a file named hash-of-ca-cert.r#. This infrastructure is encouraged, but all files in the directory
will be examined and if they contain a revocation list (in PEM format), they will be used.

PKCS12:filename
filename is the name of a PKCS #12 format file, containing the user’s certificate and private key.

PKCS11:[module_name=]modname[:slotid=slot-id][:token=token-label][:certid=cert-id][:certlabel=cert-label]
All keyword/values are optional. modname specifies the location of a library implementing PKCS #11. If a value
is encountered with no keyword, it is assumed to be the modname. If no module-name is specified, the default
is PKCS11_MODNAME. slotid= and/or token= may be specified to force the use of a particular smard card
reader or token if there is more than one available. certid= and/or certlabel= may be specified to force the
selection of a particular certificate on the device. Specifier values must not contain colon characters, as colons
are always treated as separators. See the pkinit_cert_match configuration option for more ways to select a
particular certificate to use for PKINIT.

ENV:envvar
envvar specifies the name of an environment variable which has been set to a value conforming to one of the
previous values. For example, ENV:X509_PROXY, where environment variable X509_PROXY has been set to
FILE:/tmp/my_proxy.pem.

PKINIT krb5.conf options

pkinit_anchors
Specifies the location of trusted anchor (root) certificates which the client trusts to sign KDC certificates. This
option may be specified multiple times. These values from the config file are not used if the user specifies
X509_anchors on the command line.

pkinit_cert_match
Specifies matching rules that the client certificate must match before it is used to attempt PKINIT authentication.
If a user has multiple certificates available (on a smart card, or via other media), there must be exactly one
certificate chosen before attempting PKINIT authentication. This option may be specified multiple times. All
the available certificates are checked against each rule in order until there is a match of exactly one certificate.

The Subject and Issuer comparison strings are the RFC 2253 string representations from the certificate Subject
DN and Issuer DN values.

The syntax of the matching rules is:

[relation-operator]component-rule . . .

where:

relation-operator
can be either &&, meaning all component rules must match, or ||, meaning only one component rule must
match. The default is &&.

component-rule
can be one of the following. Note that there is no punctuation or whitespace between component rules.

<SUBJECT>regular-expression
<ISSUER>regular-expression
<SAN>regular-expression
<EKU>extended-key-usage-list
<KU>key-usage-list

extended-key-usage-list is a comma-separated list of required Extended Key Usage values. All values in
the list must be present in the certificate. Extended Key Usage values can be:

2.1. Contents 25

https://datatracker.ietf.org/doc/html/rfc2253.html

Kerberos Administration Guide, Release 1.22.1

• pkinit

• msScLogin

• clientAuth

• emailProtection

key-usage-list is a comma-separated list of required Key Usage values. All values in the list must be present
in the certificate. Key Usage values can be:

• digitalSignature

• keyEncipherment

Examples:

pkinit_cert_match = ||<SUBJECT>.*DoE.*<SAN>.*@EXAMPLE.COM
pkinit_cert_match = &&<EKU>msScLogin,clientAuth<ISSUER>.*DoE.*
pkinit_cert_match = <EKU>msScLogin,clientAuth<KU>digitalSignature

pkinit_eku_checking
This option specifies what Extended Key Usage value the KDC certificate presented to the client must contain.
(Note that if the KDC certificate has the pkinit SubjectAlternativeName encoded as the Kerberos TGS name,
EKU checking is not necessary since the issuing CA has certified this as a KDC certificate.) The values recog-
nized in the krb5.conf file are:

kpKDC
This is the default value and specifies that the KDC must have the id-pkinit-KPKdc EKU as defined in RFC
4556.

kpServerAuth
If kpServerAuth is specified, a KDC certificate with the id-kp-serverAuth EKU will be accepted. This
key usage value is used in most commercially issued server certificates.

none
If none is specified, then the KDC certificate will not be checked to verify it has an acceptable EKU. The
use of this option is not recommended.

pkinit_dh_min_bits
Specifies the group of the Diffie-Hellman key the client will attempt to use. The acceptable values are 1024,
2048, P-256, 4096, P-384, and P-521. The default is 2048. (P-256, P-384, and P-521 are new in release 1.22.)

pkinit_identities
Specifies the location(s) to be used to find the user’s X.509 identity information. If this option is specified
multiple times, each value is attempted in order until certificates are found. Note that these values are not used
if the user specifies X509_user_identity on the command line.

pkinit_kdc_hostname
The presence of this option indicates that the client is willing to accept a KDC certificate with a dNSName SAN
(Subject Alternative Name) rather than requiring the id-pkinit-san as defined in RFC 4556. This option may
be specified multiple times. Its value should contain the acceptable hostname for the KDC (as contained in its
certificate).

pkinit_pool
Specifies the location of intermediate certificates which may be used by the client to complete the trust chain
between a KDC certificate and a trusted anchor. This option may be specified multiple times.

pkinit_require_crl_checking
The default certificate verification process will always check the available revocation information to see if a cer-
tificate has been revoked. If a match is found for the certificate in a CRL, verification fails. If the certificate being

26 Chapter 2. Configuration Files

https://datatracker.ietf.org/doc/html/rfc4556.html
https://datatracker.ietf.org/doc/html/rfc4556.html
https://datatracker.ietf.org/doc/html/rfc4556.html

Kerberos Administration Guide, Release 1.22.1

verified is not listed in a CRL, or there is no CRL present for its issuing CA, and pkinit_require_crl_checking
is false, then verification succeeds.

However, if pkinit_require_crl_checking is true and there is no CRL information available for the issuing CA,
then verification fails.

pkinit_require_crl_checking should be set to true if the policy is such that up-to-date CRLs must be present
for every CA.

pkinit_revoke
Specifies the location of Certificate Revocation List (CRL) information to be used by the client when verifying
the validity of the KDC certificate presented. This option may be specified multiple times.

Parameter expansion

Starting with release 1.11, several variables, such as default_keytab_name, allow parameters to be expanded. Valid
parameters are:

%{TEMP} Temporary directory
%{uid} Unix real UID or Windows SID
%{euid} Unix effective user ID or Windows SID
%{USERID} Same as %{uid}
%{null} Empty string
%{LIBDIR} Installation library directory
%{BINDIR} Installation binary directory
%{SBINDIR} Installation admin binary directory
%{username} (Unix) Username of effective user ID
%{APPDATA} (Windows) Roaming application data for current user
%{COMMON_APPDATA} (Windows) Application data for all users
%{LOCAL_APPDATA} (Windows) Local application data for current user
%{SYSTEM} (Windows) Windows system folder
%{WINDOWS} (Windows) Windows folder
%{USERCONFIG} (Windows) Per-user MIT krb5 config file directory
%{COMMONCONFIG} (Windows) Common MIT krb5 config file directory

Sample krb5.conf file

Here is an example of a generic krb5.conf file:

[libdefaults]
default_realm = ATHENA.MIT.EDU
dns_lookup_kdc = true
dns_lookup_realm = false

[realms]
ATHENA.MIT.EDU = {

kdc = kerberos.mit.edu
kdc = kerberos-1.mit.edu
kdc = kerberos-2.mit.edu
admin_server = kerberos.mit.edu
primary_kdc = kerberos.mit.edu

}
(continues on next page)

2.1. Contents 27

Kerberos Administration Guide, Release 1.22.1

(continued from previous page)

EXAMPLE.COM = {
kdc = kerberos.example.com
kdc = kerberos-1.example.com
admin_server = kerberos.example.com

}

[domain_realm]
mit.edu = ATHENA.MIT.EDU

[capaths]
ATHENA.MIT.EDU = {

EXAMPLE.COM = .
}
EXAMPLE.COM = {

ATHENA.MIT.EDU = .
}

FILES

/etc/krb5.conf

SEE ALSO

syslog(3)

2.1.2 kdc.conf

The kdc.conf file supplements krb5.conf for programs which are typically only used on a KDC, such as the krb5kdc
and kadmind daemons and the kdb5_util program. Relations documented here may also be specified in krb5.conf; for
the KDC programs mentioned, krb5.conf and kdc.conf will be merged into a single configuration profile.

Normally, the kdc.conf file is found in the KDC state directory, LOCALSTATEDIR/krb5kdc. You can override the
default location by setting the environment variable KRB5_KDC_PROFILE.

Please note that you need to restart the KDC daemon for any configuration changes to take effect.

Structure

The kdc.conf file is set up in the same format as the krb5.conf file.

28 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.22.1

Sections

The kdc.conf file may contain the following sections:

[kdcdefaults] Default values for KDC behavior
[realms] Realm-specific database configuration and settings
[dbdefaults] Default database settings
[dbmodules] Per-database settings
[logging] Controls how Kerberos daemons perform logging

[kdcdefaults]

Some relations in the [kdcdefaults] section specify default values for realm variables, to be used if the [realms] subsec-
tion does not contain a relation for the tag. See the [realms] section for the definitions of these relations.

• host_based_services

• kdc_listen

• kdc_ports

• kdc_tcp_listen

• kdc_tcp_ports

• no_host_referral

• restrict_anonymous_to_tgt

The following [kdcdefaults] variables have no per-realm equivalent:

kdc_max_dgram_reply_size
Specifies the maximum packet size that can be sent over UDP. The default value is 4096 bytes.

kdc_tcp_listen_backlog
(Integer.) Set the size of the listen queue length for the KDC daemon. The value may be limited by OS settings.
The default value is 5.

spake_preauth_kdc_challenge
(String.) Specifies the group for a SPAKE optimistic challenge. See the spake_preauth_groups variable in
[libdefaults] for possible values. The default is not to issue an optimistic challenge. (New in release 1.17.)

[realms]

Each tag in the [realms] section is the name of a Kerberos realm. The value of the tag is a subsection where the relations
define KDC parameters for that particular realm. The following example shows how to define one parameter for the
ATHENA.MIT.EDU realm:

[realms]
ATHENA.MIT.EDU = {

max_renewable_life = 7d 0h 0m 0s
}

The following tags may be specified in a [realms] subsection:

2.1. Contents 29

Kerberos Administration Guide, Release 1.22.1

acl_file
(String.) Location of the access control list file that kadmind uses to determine which principals are allowed
which permissions on the Kerberos database. To operate without an ACL file, set this relation to the empty string
with acl_file = "". The default value is LOCALSTATEDIR/krb5kdc/kadm5.acl. For more information
on Kerberos ACL file see kadm5.acl.

database_module
(String.) This relation indicates the name of the configuration section under [dbmodules] for database-specific
parameters used by the loadable database library. The default value is the realm name. If this configuration
section does not exist, default values will be used for all database parameters.

database_name
(String, deprecated.) This relation specifies the location of the Kerberos database for this realm, if the DB2
module is being used and the [dbmodules] configuration section does not specify a database name. The default
value is LOCALSTATEDIR/krb5kdc/principal.

default_principal_expiration
(abstime string.) Specifies the default expiration date of principals created in this realm. The default value is 0,
which means no expiration date.

default_principal_flags
(Flag string.) Specifies the default attributes of principals created in this realm. The format for this string is a
comma-separated list of flags, with ‘+’ before each flag that should be enabled and ‘-’ before each flag that should
be disabled. The postdateable, forwardable, tgt-based, renewable, proxiable, dup-skey, allow-tickets, and
service flags default to enabled.

There are a number of possible flags:

allow-tickets
Enabling this flag means that the KDC will issue tickets for this principal. Disabling this flag essentially
deactivates the principal within this realm.

dup-skey
Enabling this flag allows the KDC to issue user-to-user service tickets for this principal.

forwardable
Enabling this flag allows the principal to obtain forwardable tickets.

hwauth
If this flag is enabled, then the principal is required to preauthenticate using a hardware device before
receiving any tickets.

no-auth-data-required
Enabling this flag prevents PAC or AD-SIGNEDPATH data from being added to service tickets for the
principal.

ok-as-delegate
If this flag is enabled, it hints the client that credentials can and should be delegated when authenticating
to the service.

ok-to-auth-as-delegate
Enabling this flag allows the principal to use S4USelf tickets.

postdateable
Enabling this flag allows the principal to obtain postdateable tickets.

preauth
If this flag is enabled on a client principal, then that principal is required to preauthenticate to the KDC
before receiving any tickets. On a service principal, enabling this flag means that service tickets for this
principal will only be issued to clients with a TGT that has the preauthenticated bit set.

30 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.22.1

proxiable
Enabling this flag allows the principal to obtain proxy tickets.

pwchange
Enabling this flag forces a password change for this principal.

pwservice
If this flag is enabled, it marks this principal as a password change service. This should only be used in
special cases, for example, if a user’s password has expired, then the user has to get tickets for that principal
without going through the normal password authentication in order to be able to change the password.

renewable
Enabling this flag allows the principal to obtain renewable tickets.

service
Enabling this flag allows the the KDC to issue service tickets for this principal. In release 1.17 and later,
user-to-user service tickets are still allowed if the dup-skey flag is set.

tgt-based
Enabling this flag allows a principal to obtain tickets based on a ticket-granting-ticket, rather than repeating
the authentication process that was used to obtain the TGT.

dict_file
(String.) Location of the dictionary file containing strings that are not allowed as passwords. The file should
contain one string per line, with no additional whitespace. If none is specified or if there is no policy assigned
to the principal, no dictionary checks of passwords will be performed.

disable_pac
(Boolean value.) If true, the KDC will not issue PACs for this realm, and S4U2Self and S4U2Proxy operations
will be disabled. The default is false, which will permit the KDC to issue PACs. New in release 1.20.

encrypted_challenge_indicator
(String.) Specifies the authentication indicator value that the KDC asserts into tickets obtained using FAST
encrypted challenge pre-authentication. New in 1.16.

host_based_services
(Whitespace- or comma-separated list.) Lists services which will get host-based referral processing even if the
server principal is not marked as host-based by the client.

iprop_enable
(Boolean value.) Specifies whether incremental database propagation is enabled. The default value is false.

iprop_ulogsize
(Integer.) Specifies the maximum number of log entries to be retained for incremental propagation. The default
value is 1000. Prior to release 1.11, the maximum value was 2500. New in release 1.19.

iprop_master_ulogsize
The name for iprop_ulogsize prior to release 1.19. Its value is used as a fallback if iprop_ulogsize is not
specified.

iprop_replica_poll
(Delta time string.) Specifies how often the replica KDC polls for new updates from the primary. The default
value is 2m (that is, two minutes). New in release 1.17.

iprop_slave_poll
(Delta time string.) The name for iprop_replica_poll prior to release 1.17. Its value is used as a fallback if
iprop_replica_poll is not specified.

iprop_listen
(Whitespace- or comma-separated list.) Specifies the iprop RPC listening addresses and/or ports for the kadmind
daemon. Each entry may be an interface address, a port number, or an address and port number separated by

2.1. Contents 31

Kerberos Administration Guide, Release 1.22.1

a colon. If the address contains colons, enclose it in square brackets. If no address is specified, the wildcard
address is used. If kadmind fails to bind to any of the specified addresses, it will fail to start. The default (when
iprop_enable is true) is to bind to the wildcard address at the port specified in iprop_port. New in release 1.15.

iprop_port
(Port number.) Specifies the port number to be used for incremental propagation. When iprop_enable is true,
this relation is required in the replica KDC configuration file, and this relation or iprop_listen is required in the
primary configuration file, as there is no default port number. Port numbers specified in iprop_listen entries will
override this port number for the kadmind daemon.

iprop_resync_timeout
(Delta time string.) Specifies the amount of time to wait for a full propagation to complete. This is optional in
configuration files, and is used by replica KDCs only. The default value is 5 minutes (5m). New in release 1.11.

iprop_logfile
(File name.) Specifies where the update log file for the realm database is to be stored. The default is to use
the database_name entry from the realms section of the krb5 config file, with .ulog appended. (NOTE: If
database_name isn’t specified in the realms section, perhaps because the LDAP database back end is being
used, or the file name is specified in the [dbmodules] section, then the hard-coded default for database_name is
used. Determination of the iprop_logfile default value will not use values from the [dbmodules] section.)

kadmind_listen
(Whitespace- or comma-separated list.) Specifies the kadmin RPC listening addresses and/or ports for the kad-
mind daemon. Each entry may be an interface address, a port number, an address and port number separated by
a colon, or a UNIX domain socket pathname. If the address contains colons, enclose it in square brackets. If no
address is specified, the wildcard address is used. To disable listening for kadmin RPC connections, set this rela-
tion to the empty string with kadmind_listen = "". If kadmind fails to bind to any of the specified addresses,
it will fail to start. The default is to bind to the wildcard address at the port specified in kadmind_port, or the
standard kadmin port (749). New in release 1.15.

kadmind_port
(Port number.) Specifies the port on which the kadmind daemon is to listen for this realm. Port numbers specified
in kadmind_listen entries will override this port number. The assigned port for kadmind is 749, which is used
by default.

key_stash_file
(String.) Specifies the location where the master key has been stored (via kdb5_util stash). The default is LO-
CALSTATEDIR/krb5kdc/.k5.REALM, where REALM is the Kerberos realm.

kdc_listen
(Whitespace- or comma-separated list.) Specifies the listening addresses and/or ports for the krb5kdc daemon.
Each entry may be an interface address, a port number, an address and port number separated by a colon, or a
UNIX domain socket pathname. If the address contains colons, enclose it in square brackets. If no address is
specified, the wildcard address is used. If no port is specified, the standard port (88) is used. To disable listening
on UDP, set this relation to the empty string with kdc_listen = "". If the KDC daemon fails to bind to any
of the specified addresses, it will fail to start. The default is to bind to the wildcard address on the standard port.
New in release 1.15.

kdc_ports
(Whitespace- or comma-separated list, deprecated.) Prior to release 1.15, this relation lists the ports for the
krb5kdc daemon to listen on for UDP requests. In release 1.15 and later, it has the same meaning as kdc_listen
if that relation is not defined.

kdc_tcp_listen
(Whitespace- or comma-separated list.) Specifies the TCP listening addresses and/or ports for the krb5kdc dae-
mon. The syntax is identical to that of kdc_listen. To disable listening on TCP, set this relation to the empty
string with kdc_tcp_listen = "". The default is to bind to the same addresses and ports as for UDP. New in
release 1.15.

32 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.22.1

kdc_tcp_ports
(Whitespace- or comma-separated list, deprecated.) Prior to release 1.15, this relation lists the ports for
the krb5kdc daemon to listen on for UDP requests. In release 1.15 and later, it has the same meaning as
kdc_tcp_listen if that relation is not defined.

kpasswd_listen
(Comma-separated list.) Specifies the kpasswd listening addresses and/or ports for the kadmind daemon. Each
entry may be an interface address, a port number, an address and port number separated by a colon, or a UNIX
domain socket pathname. If the address contains colons, enclose it in square brackets. If no address is specified,
the wildcard address is used. To disable listening for kpasswd requests, set this relation to the empty string with
kpasswd_listen = "". If kadmind fails to bind to any of the specified addresses, it will fail to start. The
default is to bind to the wildcard address at the port specified in kpasswd_port, or the standard kpasswd port
(464). New in release 1.15.

kpasswd_port
(Port number.) Specifies the port on which the kadmind daemon is to listen for password change requests for this
realm. Port numbers specified in kpasswd_listen entries will override this port number. The assigned port for
password change requests is 464, which is used by default.

master_key_name
(String.) Specifies the name of the principal associated with the master key. The default is K/M.

master_key_type
(Key type string.) Specifies the master key’s key type. The default value for this is aes256-cts-hmac-sha1-96.
For a list of all possible values, see Encryption types.

max_life
(duration string.) Specifies the maximum time period for which a ticket may be valid in this realm. The default
value is 24 hours.

max_renewable_life
(duration string.) Specifies the maximum time period during which a valid ticket may be renewed in this realm.
The default value is 0.

no_host_referral
(Whitespace- or comma-separated list.) Lists services to block from getting host-based referral processing,
even if the client marks the server principal as host-based or the service is also listed in host_based_services.
no_host_referral = * will disable referral processing altogether.

reject_bad_transit
(Boolean value.) If set to true, the KDC will check the list of transited realms for cross-realm tickets against
the transit path computed from the realm names and the capaths section of its krb5.conf file; if the path in the
ticket to be issued contains any realms not in the computed path, the ticket will not be issued, and an error will
be returned to the client instead. If this value is set to false, such tickets will be issued anyways, and it will be
left up to the application server to validate the realm transit path.

If the disable-transited-check flag is set in the incoming request, this check is not performed at all. Having the
reject_bad_transit option will cause such ticket requests to be rejected always.

This transit path checking and config file option currently apply only to TGS requests.

The default value is true.

restrict_anonymous_to_tgt
(Boolean value.) If set to true, the KDC will reject ticket requests from anonymous principals to service principals
other than the realm’s ticket-granting service. This option allows anonymous PKINIT to be enabled for use as
FAST armor tickets without allowing anonymous authentication to services. The default value is false. New in
release 1.9.

2.1. Contents 33

Kerberos Administration Guide, Release 1.22.1

spake_preauth_indicator
(String.) Specifies an authentication indicator value that the KDC asserts into tickets obtained using SPAKE
pre-authentication. The default is not to add any indicators. This option may be specified multiple times. New
in release 1.17.

supported_enctypes
(List of key:salt strings.) Specifies the default key/salt combinations of principals for this realm. Any
principals created through kadmin will have keys of these types. The default value for this tag is
aes256-cts-hmac-sha1-96:normal aes128-cts-hmac-sha1-96:normal. For lists of possible values,
see Keysalt lists.

[dbdefaults]

The [dbdefaults] section specifies default values for some database parameters, to be used if the [dbmodules] subsection
does not contain a relation for the tag. See the [dbmodules] section for the definitions of these relations.

• ldap_kerberos_container_dn

• ldap_kdc_dn

• ldap_kdc_sasl_authcid

• ldap_kdc_sasl_authzid

• ldap_kdc_sasl_mech

• ldap_kdc_sasl_realm

• ldap_kadmind_dn

• ldap_kadmind_sasl_authcid

• ldap_kadmind_sasl_authzid

• ldap_kadmind_sasl_mech

• ldap_kadmind_sasl_realm

• ldap_service_password_file

• ldap_conns_per_server

[dbmodules]

The [dbmodules] section contains parameters used by the KDC database library and database modules. Each tag in
the [dbmodules] section is the name of a Kerberos realm or a section name specified by a realm’s database_module
parameter. The following example shows how to define one database parameter for the ATHENA.MIT.EDU realm:

[dbmodules]
ATHENA.MIT.EDU = {

disable_last_success = true
}

The following tags may be specified in a [dbmodules] subsection:

database_name
This DB2-specific tag indicates the location of the database in the filesystem. The default is LOCALSTATEDIR/
krb5kdc/principal.

34 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.22.1

db_library
This tag indicates the name of the loadable database module. The value should be db2 for the DB2 module,
klmdb for the LMDB module, or kldap for the LDAP module.

disable_last_success
If set to true, suppresses KDC updates to the “Last successful authentication” field of principal entries re-
quiring preauthentication. Setting this flag may improve performance. (Principal entries which do not require
preauthentication never update the “Last successful authentication” field.). First introduced in release 1.9.

disable_lockout
If set to true, suppresses KDC updates to the “Last failed authentication” and “Failed password attempts” fields
of principal entries requiring preauthentication. Setting this flag may improve performance, but also disables
account lockout. First introduced in release 1.9.

ldap_conns_per_server
This LDAP-specific tag indicates the number of connections to be maintained per LDAP server.

ldap_kdc_dn and ldap_kadmind_dn
These LDAP-specific tags indicate the default DN for binding to the LDAP server. The krb5kdc daemon uses
ldap_kdc_dn, while the kadmind daemon and other administrative programs use ldap_kadmind_dn. The kad-
mind DN must have the rights to read and write the Kerberos data in the LDAP database. The KDC DN must have
the same rights, unless disable_lockout and disable_last_success are true, in which case it only needs to have
rights to read the Kerberos data. These tags are ignored if a SASL mechanism is set with ldap_kdc_sasl_mech
or ldap_kadmind_sasl_mech.

ldap_kdc_sasl_mech and ldap_kadmind_sasl_mech
These LDAP-specific tags specify the SASL mechanism (such as EXTERNAL) to use when binding to the LDAP
server. New in release 1.13.

ldap_kdc_sasl_authcid and ldap_kadmind_sasl_authcid
These LDAP-specific tags specify the SASL authentication identity to use when binding to the LDAP server. Not
all SASL mechanisms require an authentication identity. If the SASL mechanism requires a secret (such as the
password for DIGEST-MD5), these tags also determine the name within the ldap_service_password_file where
the secret is stashed. New in release 1.13.

ldap_kdc_sasl_authzid and ldap_kadmind_sasl_authzid
These LDAP-specific tags specify the SASL authorization identity to use when binding to the LDAP server. In
most circumstances they do not need to be specified. New in release 1.13.

ldap_kdc_sasl_realm and ldap_kadmind_sasl_realm
These LDAP-specific tags specify the SASL realm to use when binding to the LDAP server. In most circum-
stances they do not need to be set. New in release 1.13.

ldap_kerberos_container_dn
This LDAP-specific tag indicates the DN of the container object where the realm objects will be located.

ldap_servers
This LDAP-specific tag indicates the list of LDAP servers that the Kerberos servers can connect to. The list of
LDAP servers is whitespace-separated. The LDAP server is specified by a LDAP URI. It is recommended to use
ldapi: or ldaps: URLs to connect to the LDAP server.

ldap_service_password_file
This LDAP-specific tag indicates the file containing the stashed passwords (created by kdb5_ldap_util
stashsrvpw) for the ldap_kdc_dn and ldap_kadmind_dn objects, or for the ldap_kdc_sasl_authcid or
ldap_kadmind_sasl_authcid names for SASL authentication. This file must be kept secure.

mapsize
This LMDB-specific tag indicates the maximum size of the two database environments in megabytes. The default
value is 128. Increase this value to address “Environment mapsize limit reached” errors. New in release 1.17.

2.1. Contents 35

Kerberos Administration Guide, Release 1.22.1

max_readers
This LMDB-specific tag indicates the maximum number of concurrent reading processes for the databases. The
default value is 128. New in release 1.17.

nosync
This LMDB-specific tag can be set to improve the throughput of kadmind and other administrative agents, at the
expense of durability (recent database changes may not survive a power outage or other sudden reboot). It does
not affect the throughput of the KDC. The default value is false. New in release 1.17.

unlockiter
If set to true, this DB2-specific tag causes iteration operations to release the database lock while processing each
principal. Setting this flag to true can prevent extended blocking of KDC or kadmin operations when dumps of
large databases are in progress. First introduced in release 1.13.

The following tag may be specified directly in the [dbmodules] section to control where database modules are loaded
from:

db_module_dir
This tag controls where the plugin system looks for database modules. The value should be an absolute path.

[logging]

The [logging] section indicates how krb5kdc and kadmind perform logging. It may contain the following relations:

admin_server
Specifies how kadmind performs logging.

kdc
Specifies how krb5kdc performs logging.

default
Specifies how either daemon performs logging in the absence of relations specific to the daemon.

debug
(Boolean value.) Specifies whether debugging messages are included in log outputs other than SYSLOG. De-
bugging messages are always included in the system log output because syslog performs its own priority filtering.
The default value is false. New in release 1.15.

Logging specifications may have the following forms:

FILE=filename or FILE:filename
This value causes the daemon’s logging messages to go to the filename. If the = form is used, the file is overwrit-
ten. If the : form is used, the file is appended to.

STDERR
This value causes the daemon’s logging messages to go to its standard error stream.

CONSOLE
This value causes the daemon’s logging messages to go to the console, if the system supports it.

DEVICE=<devicename>
This causes the daemon’s logging messages to go to the specified device.

SYSLOG[:severity[:facility]]
This causes the daemon’s logging messages to go to the system log.

For backward compatibility, a severity argument may be specified, and must be specified in order to specify a
facility. This argument will be ignored.

36 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.22.1

The facility argument specifies the facility under which the messages are logged. This may be any of the following
facilities supported by the syslog(3) call minus the LOG_ prefix: KERN, USER, MAIL, DAEMON, AUTH,
LPR, NEWS, UUCP, CRON, and LOCAL0 through LOCAL7. If no facility is specified, the default is AUTH.

In the following example, the logging messages from the KDC will go to the console and to the system log under
the facility LOG_DAEMON, and the logging messages from the administrative server will be appended to the file
/var/adm/kadmin.log and sent to the device /dev/tty04.

[logging]
kdc = CONSOLE
kdc = SYSLOG:INFO:DAEMON
admin_server = FILE:/var/adm/kadmin.log
admin_server = DEVICE=/dev/tty04

If no logging specification is given, the default is to use syslog. To disable logging entirely, specify default =
DEVICE=/dev/null.

[otp]

Each subsection of [otp] is the name of an OTP token type. The tags within the subsection define the configuration
required to forward a One Time Password request to a RADIUS server.

For each token type, the following tags may be specified:

server
This is the server to send the RADIUS request to. It can be a hostname with optional port, an ip address with
optional port, or a Unix domain socket address. The default is LOCALSTATEDIR/krb5kdc/<name>.socket.

secret
This tag indicates a filename (which may be relative to LOCALSTATEDIR/krb5kdc) containing the secret used
to encrypt the RADIUS packets. The secret should appear in the first line of the file by itself; leading and trailing
whitespace on the line will be removed. If the value of server is a Unix domain socket address, this tag is
optional, and an empty secret will be used if it is not specified. Otherwise, this tag is required.

timeout
An integer which specifies the time in seconds during which the KDC should attempt to contact the RADIUS
server. This tag is the total time across all retries and should be less than the time which an OTP value remains
valid for. The default is 5 seconds.

retries
This tag specifies the number of retries to make to the RADIUS server. The default is 3 retries (4 tries).

strip_realm
If this tag is true, the principal without the realm will be passed to the RADIUS server. Otherwise, the realm
will be included. The default value is true.

indicator
This tag specifies an authentication indicator to be included in the ticket if this token type is used to authenticate.
This option may be specified multiple times. (New in release 1.14.)

In the following example, requests are sent to a remote server via UDP:

[otp]
MyRemoteTokenType = {

server = radius.mydomain.com:1812
secret = SEmfiajf42$
timeout = 15

(continues on next page)

2.1. Contents 37

Kerberos Administration Guide, Release 1.22.1

(continued from previous page)

retries = 5
strip_realm = true

}

An implicit default token type named DEFAULT is defined for when the per-principal configuration does not specify
a token type. Its configuration is shown below. You may override this token type to something applicable for your
situation:

[otp]
DEFAULT = {

strip_realm = false
}

PKINIT options

Note: The following are pkinit-specific options. These values may be specified in [kdcdefaults] as global defaults,
or within a realm-specific subsection of [realms]. Also note that a realm-specific value over-rides, does not add to, a
generic [kdcdefaults] specification. The search order is:

1. realm-specific subsection of [realms]:

[realms]
EXAMPLE.COM = {

pkinit_anchors = FILE:/usr/local/example.com.crt
}

2. generic value in the [kdcdefaults] section:

[kdcdefaults]
pkinit_anchors = DIR:/usr/local/generic_trusted_cas/

For information about the syntax of some of these options, see Specifying PKINIT identity information in krb5.conf .

pkinit_anchors
Specifies the location of trusted anchor (root) certificates which the KDC trusts to sign client certificates. This
option is required if pkinit is to be supported by the KDC. This option may be specified multiple times.

pkinit_dh_min_bits
Specifies the minimum strength of Diffie-Hellman group the KDC is willing to accept for key exchange. Valid
values in order of increasing strength are 1024, 2048, P-256, 4096, P-384, and P-521. The default is 2048.
(P-256, P-384, and P-521 are new in release 1.22.)

pkinit_allow_upn
Specifies that the KDC is willing to accept client certificates with the Microsoft UserPrincipalName (UPN)
Subject Alternative Name (SAN). This means the KDC accepts the binding of the UPN in the certificate to the
Kerberos principal name. The default value is false.

Without this option, the KDC will only accept certificates with the id-pkinit-san as defined in RFC 4556. There
is currently no option to disable SAN checking in the KDC.

pkinit_eku_checking
This option specifies what Extended Key Usage (EKU) values the KDC is willing to accept in client certificates.
The values recognized in the kdc.conf file are:

38 Chapter 2. Configuration Files

https://datatracker.ietf.org/doc/html/rfc4556.html

Kerberos Administration Guide, Release 1.22.1

kpClientAuth
This is the default value and specifies that client certificates must have the id-pkinit-KPClientAuth EKU as
defined in RFC 4556.

scLogin
If scLogin is specified, client certificates with the Microsoft Smart Card Login EKU (id-ms-kp-sc-logon)
will be accepted.

none
If none is specified, then client certificates will not be checked to verify they have an acceptable EKU. The
use of this option is not recommended.

pkinit_identity
Specifies the location of the KDC’s X.509 identity information. This option is required if pkinit is to be supported
by the KDC.

pkinit_indicator
Specifies an authentication indicator to include in the ticket if pkinit is used to authenticate. This option may be
specified multiple times. (New in release 1.14.)

pkinit_pool
Specifies the location of intermediate certificates which may be used by the KDC to complete the trust chain
between a client’s certificate and a trusted anchor. This option may be specified multiple times.

pkinit_revoke
Specifies the location of Certificate Revocation List (CRL) information to be used by the KDC when verifying
the validity of client certificates. This option may be specified multiple times.

pkinit_require_crl_checking
The default certificate verification process will always check the available revocation information to see if a cer-
tificate has been revoked. If a match is found for the certificate in a CRL, verification fails. If the certificate being
verified is not listed in a CRL, or there is no CRL present for its issuing CA, and pkinit_require_crl_checking
is false, then verification succeeds.

However, if pkinit_require_crl_checking is true and there is no CRL information available for the issuing CA,
then verification fails.

pkinit_require_crl_checking should be set to true if the policy is such that up-to-date CRLs must be present
for every CA.

pkinit_require_freshness
Specifies whether to require clients to include a freshness token in PKINIT requests. The default value is false.
(New in release 1.17.)

Encryption types

Any tag in the configuration files which requires a list of encryption types can be set to some combination of the follow-
ing strings. Encryption types marked as “weak” and “deprecated” are available for compatibility but not recommended
for use.

2.1. Contents 39

https://datatracker.ietf.org/doc/html/rfc4556.html

Kerberos Administration Guide, Release 1.22.1

des3-cbc-raw Triple DES cbc mode raw (weak)
des3-cbc-sha1 des3-hmac-sha1
des3-cbc-sha1-kd

Triple DES cbc mode with HMAC/sha1 (deprecated)

aes256-cts-hmac-sha1-96
aes256-cts aes256-sha1

AES-256 CTS mode with 96-bit SHA-1 HMAC

aes128-cts-hmac-sha1-96
aes128-cts aes128-sha1

AES-128 CTS mode with 96-bit SHA-1 HMAC

aes256-cts-hmac-sha384-192
aes256-sha2

AES-256 CTS mode with 192-bit SHA-384 HMAC

aes128-cts-hmac-sha256-128
aes128-sha2

AES-128 CTS mode with 128-bit SHA-256 HMAC

arcfour-hmac rc4-hmac arcfour-
hmac-md5

RC4 with HMAC/MD5 (deprecated)

arcfour-hmac-exp rc4-hmac-exp
arcfour-hmac-md5-exp

Exportable RC4 with HMAC/MD5 (weak)

camellia256-cts-cmac
camellia256-cts

Camellia-256 CTS mode with CMAC

camellia128-cts-cmac
camellia128-cts

Camellia-128 CTS mode with CMAC

des3 The triple DES family: des3-cbc-sha1
aes The AES family: aes256-cts-hmac-sha1-96, aes128-cts-hmac-sha1-96, aes256-

cts-hmac-sha384-192, and aes128-cts-hmac-sha256-128
rc4 The RC4 family: arcfour-hmac
camellia The Camellia family: camellia256-cts-cmac and camellia128-cts-cmac

The string DEFAULT can be used to refer to the default set of types for the variable in question. Types or families can
be removed from the current list by prefixing them with a minus sign (“-“). Types or families can be prefixed with a
plus sign (“+”) for symmetry; it has the same meaning as just listing the type or family. For example, “DEFAULT -rc4”
would be the default set of encryption types with RC4 types removed, and “des3 DEFAULT” would be the default set
of encryption types with triple DES types moved to the front.

While aes128-cts and aes256-cts are supported for all Kerberos operations, they are not supported by very old versions
of our GSSAPI implementation (krb5-1.3.1 and earlier). Services running versions of krb5 without AES support must
not be given keys of these encryption types in the KDC database.

The aes128-sha2 and aes256-sha2 encryption types are new in release 1.15. Services running versions of krb5 without
support for these newer encryption types must not be given keys of these encryption types in the KDC database.

Keysalt lists

Kerberos keys for users are usually derived from passwords. Kerberos commands and configuration parameters that
affect generation of keys take lists of enctype-salttype (“keysalt”) pairs, known as keysalt lists. Each keysalt pair is an
enctype name followed by a salttype name, in the format enc:salt. Individual keysalt list members are separated by
comma (“,”) characters or space characters. For example:

kadmin -e aes256-cts:normal,aes128-cts:normal

would start up kadmin so that by default it would generate password-derived keys for the aes256-cts and aes128-cts
encryption types, using a normal salt.

To ensure that people who happen to pick the same password do not have the same key, Kerberos 5 incorporates more
information into the key using something called a salt. The supported salt types are as follows:

40 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.22.1

normal default for Kerberos Version 5
norealm same as the default, without using realm information
onlyrealm uses only realm information as the salt
special generate a random salt

Sample kdc.conf File

Here’s an example of a kdc.conf file:

[kdcdefaults]
kdc_listen = 88
kdc_tcp_listen = 88

[realms]
ATHENA.MIT.EDU = {

kadmind_port = 749
max_life = 12h 0m 0s
max_renewable_life = 7d 0h 0m 0s
master_key_type = aes256-cts-hmac-sha1-96
supported_enctypes = aes256-cts-hmac-sha1-96:normal aes128-cts-hmac-sha1-

→˓96:normal
database_module = openldap_ldapconf

}

[logging]
kdc = FILE:/usr/local/var/krb5kdc/kdc.log
admin_server = FILE:/usr/local/var/krb5kdc/kadmin.log

[dbdefaults]
ldap_kerberos_container_dn = cn=krbcontainer,dc=mit,dc=edu

[dbmodules]
openldap_ldapconf = {

db_library = kldap
disable_last_success = true
ldap_kdc_dn = "cn=krbadmin,dc=mit,dc=edu"

this object needs to have read rights on
the realm container and principal subtrees

ldap_kadmind_dn = "cn=krbadmin,dc=mit,dc=edu"
this object needs to have read and write rights on
the realm container and principal subtrees

ldap_service_password_file = /etc/kerberos/service.keyfile
ldap_servers = ldaps://kerberos.mit.edu
ldap_conns_per_server = 5

}

2.1. Contents 41

Kerberos Administration Guide, Release 1.22.1

FILES

LOCALSTATEDIR/krb5kdc/kdc.conf

SEE ALSO

krb5.conf , krb5kdc, kadm5.acl

2.1.3 kadm5.acl

DESCRIPTION

The Kerberos kadmind daemon uses an Access Control List (ACL) file to manage access rights to the Kerberos database.
For operations that affect principals, the ACL file also controls which principals can operate on which other principals.

The default location of the Kerberos ACL file is LOCALSTATEDIR/krb5kdc/kadm5.acl unless this is overridden
by the acl_file variable in kdc.conf .

SYNTAX

Empty lines and lines starting with the sharp sign (#) are ignored. Lines containing ACL entries have the format:

principal permissions [target_principal [restrictions]]

Note: Line order in the ACL file is important. The first matching entry will control access for an actor principal on a
target principal.

principal
(Partially or fully qualified Kerberos principal name.) Specifies the principal whose permissions are to be set.

Each component of the name may be wildcarded using the * character.

permissions
Specifies what operations may or may not be performed by a principal matching a particular entry. This is a string
of one or more of the following list of characters or their upper-case counterparts. If the character is upper-case,
then the operation is disallowed. If the character is lower-case, then the operation is permitted.

a [Dis]allows the addition of principals or policies
c [Dis]allows the changing of passwords for principals
d [Dis]allows the deletion of principals or policies
e [Dis]allows the extraction of principal keys
i [Dis]allows inquiries about principals or policies
l [Dis]allows the listing of all principals or policies
m [Dis]allows the modification of principals or policies
p [Dis]allows the propagation of the principal database (used in Incremental database propagation)
s [Dis]allows the explicit setting of the key for a principal
x Short for admcilsp. All privileges (except e)
* Same as x.

42 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.22.1

Note: The extract privilege is not included in the wildcard privilege; it must be explicitly assigned. This privilege
allows the user to extract keys from the database, and must be handled with great care to avoid disclosure of important
keys like those of the kadmin/* or krbtgt/* principals. The lockdown_keys principal attribute can be used to prevent
key extraction from specific principals regardless of the granted privilege.

target_principal
(Optional. Partially or fully qualified Kerberos principal name.) Specifies the principal on which permissions
may be applied. Each component of the name may be wildcarded using the * character.

target_principal can also include back-references to principal, in which *number matches the corresponding
wildcard in principal.

restrictions
(Optional) A string of flags. Allowed restrictions are:

{+|-}flagname
flag is forced to the indicated value. The permissible flags are the same as those for the de-
fault_principal_flags variable in kdc.conf .

-clearpolicy
policy is forced to be empty.

-policy pol
policy is forced to be pol.

-{expire, pwexpire, maxlife, maxrenewlife} time
(getdate string) associated value will be forced to MIN(time, requested value).

The above flags act as restrictions on any add or modify operation which is allowed due to that ACL line.

Warning: If the kadmind ACL file is modified, the kadmind daemon needs to be restarted for changes to take
effect.

EXAMPLE

Here is an example of a kadm5.acl file:

*/admin@ATHENA.MIT.EDU * # line 1
joeadmin@ATHENA.MIT.EDU ADMCIL # line 2
joeadmin/*@ATHENA.MIT.EDU i */root@ATHENA.MIT.EDU # line 3
*/root@ATHENA.MIT.EDU ci *1@ATHENA.MIT.EDU # line 4
*/root@ATHENA.MIT.EDU l * # line 5
sms@ATHENA.MIT.EDU x * -maxlife 9h -postdateable # line 6

(line 1) Any principal in the ATHENA.MIT.EDU realm with an admin instance has all administrative privileges except
extracting keys.

(lines 1-3) The user joeadmin has all permissions except extracting keys with his admin instance, joeadmin/
admin@ATHENA.MIT.EDU (matches line 1). He has no permissions at all with his null instance, joeadmin@ATHENA.
MIT.EDU (matches line 2). His root and other non-admin, non-null instances (e.g., extra or dbadmin) have inquire
permissions with any principal that has the instance root (matches line 3).

(line 4) Any root principal in ATHENA.MIT.EDU can inquire or change the password of their null instance, but not
any other null instance. (Here, *1 denotes a back-reference to the component matching the first wildcard in the actor
principal.)

2.1. Contents 43

Kerberos Administration Guide, Release 1.22.1

(line 5) Any root principal in ATHENA.MIT.EDU can generate the list of principals in the database, and the list of
policies in the database. This line is separate from line 4, because list permission can only be granted globally, not to
specific target principals.

(line 6) Finally, the Service Management System principal sms@ATHENA.MIT.EDU has all permissions except extracting
keys, but any principal that it creates or modifies will not be able to get postdateable tickets or tickets with a life of
longer than 9 hours.

MODULE BEHAVIOR

The ACL file can coexist with other authorization modules in release 1.16 and later, as configured in the kadm5_auth
interface section of krb5.conf . The ACL file will positively authorize operations according to the rules above, but will
never authoritatively deny an operation, so other modules can authorize operations in addition to those authorized by
the ACL file.

To operate without an ACL file, set the acl_file variable in kdc.conf to the empty string with acl_file = "".

SEE ALSO

kdc.conf , kadmind

44 Chapter 2. Configuration Files

CHAPTER

THREE

REALM CONFIGURATION DECISIONS

Before installing Kerberos V5, it is necessary to consider the following issues:

• The name of your Kerberos realm (or the name of each realm, if you need more than one).

• How you will assign your hostnames to Kerberos realms.

• Which ports your KDC and and kadmind services will use, if they will not be using the default ports.

• How many replica KDCs you need and where they should be located.

• The hostnames of your primary and replica KDCs.

• How frequently you will propagate the database from the primary KDC to the replica KDCs.

3.1 Realm name

Although your Kerberos realm can be any ASCII string, convention is to make it the same as your domain name, in
upper-case letters.

For example, hosts in the domain example.com would be in the Kerberos realm:

EXAMPLE.COM

If you need multiple Kerberos realms, MIT recommends that you use descriptive names which end with your domain
name, such as:

BOSTON.EXAMPLE.COM
HOUSTON.EXAMPLE.COM

3.2 Mapping hostnames onto Kerberos realms

Mapping hostnames onto Kerberos realms is done in one of three ways.

The first mechanism works through a set of rules in the [domain_realm] section of krb5.conf . You can specify mappings
for an entire domain or on a per-hostname basis. Typically you would do this by specifying the mappings for a given
domain or subdomain and listing the exceptions.

The second mechanism is to use KDC host-based service referrals. With this method, the KDC’s krb5.conf has a full
[domain_realm] mapping for hosts, but the clients do not, or have mappings for only a subset of the hosts they might
contact. When a client needs to contact a server host for which it has no mapping, it will ask the client realm’s KDC
for the service ticket, and will receive a referral to the appropriate service realm.

45

Kerberos Administration Guide, Release 1.22.1

To use referrals, clients must be running MIT krb5 1.6 or later, and the KDC must be running MIT krb5 1.7 or later.
The host_based_services and no_host_referral variables in the [realms] section of kdc.conf can be used to fine-tune
referral behavior on the KDC.

It is also possible for clients to use DNS TXT records, if dns_lookup_realm is enabled in krb5.conf . Such lookups
are disabled by default because DNS is an insecure protocol and security holes could result if DNS records are spoofed.
If enabled, the client will try to look up a TXT record formed by prepending the prefix _kerberos to the hostname in
question. If that record is not found, the client will attempt a lookup by prepending _kerberos to the host’s domain
name, then its parent domain, up to the top-level domain. For the hostname boston.engineering.example.com,
the names looked up would be:

_kerberos.boston.engineering.example.com
_kerberos.engineering.example.com
_kerberos.example.com
_kerberos.com

The value of the first TXT record found is taken as the realm name.

Even if you do not choose to use this mechanism within your site, you may wish to set it up anyway, for use when
interacting with other sites.

3.3 Ports for the KDC and admin services

The default ports used by Kerberos are port 88 for the KDC and port 749 for the admin server. You can, however,
choose to run on other ports, as long as they are specified in each host’s krb5.conf files or in DNS SRV records, and
the kdc.conf file on each KDC. For a more thorough treatment of port numbers used by the Kerberos V5 programs,
refer to the Configuring your firewall to work with Kerberos V5.

3.4 Replica KDCs

Replica KDCs provide an additional source of Kerberos ticket-granting services in the event of inaccessibility of the
primary KDC. The number of replica KDCs you need and the decision of where to place them, both physically and
logically, depends on the specifics of your network.

Kerberos authentication requires that each client be able to contact a KDC. Therefore, you need to anticipate any likely
reason a KDC might be unavailable and have a replica KDC to take up the slack.

Some considerations include:

• Have at least one replica KDC as a backup, for when the primary KDC is down, is being upgraded, or is otherwise
unavailable.

• If your network is split such that a network outage is likely to cause a network partition (some segment or segments
of the network to become cut off or isolated from other segments), have a replica KDC accessible to each segment.

• If possible, have at least one replica KDC in a different building from the primary, in case of power outages, fires,
or other localized disasters.

46 Chapter 3. Realm configuration decisions

Kerberos Administration Guide, Release 1.22.1

3.5 Hostnames for KDCs

MIT recommends that your KDCs have a predefined set of CNAME records (DNS hostname aliases), such as kerberos
for the primary KDC and kerberos-1, kerberos-2, . . . for the replica KDCs. This way, if you need to swap a
machine, you only need to change a DNS entry, rather than having to change hostnames.

As of MIT krb5 1.4, clients can locate a realm’s KDCs through DNS using SRV records (RFC 2782), assuming the
Kerberos realm name is also a DNS domain name. These records indicate the hostname and port number to contact for
that service, optionally with weighting and prioritization. The domain name used in the SRV record name is the realm
name. Several different Kerberos-related service names are used:

_kerberos._udp
This is for contacting any KDC by UDP. This entry will be used the most often. Normally you should list port
88 on each of your KDCs.

_kerberos._tcp
This is for contacting any KDC by TCP. Normally you should use port 88. This entry should be omitted if the
KDC does not listen on TCP ports, as was the default prior to release 1.13.

_kerberos-master._udp
This entry should refer to those KDCs, if any, that will immediately see password changes to the Kerberos
database. If a user is logging in and the password appears to be incorrect, the client will retry with the primary
KDC before failing with an “incorrect password” error given.

If you have only one KDC, or for whatever reason there is no accessible KDC that would get database changes
faster than the others, you do not need to define this entry.

_kerberos-adm._tcp
This should list port 749 on your primary KDC. Support for it is not complete at this time, but it will eventually
be used by the kadmin program and related utilities. For now, you will also need the admin_server variable in
krb5.conf .

_kerberos-master._tcp
The corresponding TCP port for _kerberos-master._udp, assuming the primary KDC listens on a TCP port.

_kpasswd._udp
This entry should list port 464 on your primary KDC. It is used when a user changes her password. If this entry
is not defined but a _kerberos-adm._tcp entry is defined, the client will use the _kerberos-adm._tcp entry with
the port number changed to 464.

_kpasswd._tcp
The corresponding TCP port for _kpasswd._udp.

The DNS SRV specification requires that the hostnames listed be the canonical names, not aliases. So, for example,
you might include the following records in your (BIND-style) zone file:

$ORIGIN foobar.com.
_kerberos TXT "FOOBAR.COM"
kerberos CNAME daisy
kerberos-1 CNAME use-the-force-luke
kerberos-2 CNAME bunny-rabbit
_kerberos._udp SRV 0 0 88 daisy

SRV 0 0 88 use-the-force-luke
SRV 0 0 88 bunny-rabbit

_kerberos-master._udp SRV 0 0 88 daisy
_kerberos-adm._tcp SRV 0 0 749 daisy
_kpasswd._udp SRV 0 0 464 daisy

3.5. Hostnames for KDCs 47

https://datatracker.ietf.org/doc/html/rfc2782.html

Kerberos Administration Guide, Release 1.22.1

Clients can also be configured with the explicit location of services using the kdc, master_kdc, admin_server, and
kpasswd_server variables in the [realms] section of krb5.conf . Even if some clients will be configured with explicit
server locations, providing SRV records will still benefit unconfigured clients, and be useful for other sites.

Clients can be configured with the sitename realm variable (new in release 1.22). If a site name is set, the client first
attempts SRV record lookups with “.*sitename*._sites” inserted after the service and protocol name and before the
Kerberos realm. Site-specific records may indicate servers more proximal to the client, allowing for faster access.

3.6 KDC Discovery

As of MIT krb5 1.15, clients can also locate KDCs in DNS through URI records (RFC 7553). Limitations with the
SRV record format may result in extra DNS queries in situations where a client must failover to other transport types,
or find a primary server. The URI record can convey more information about a realm’s KDCs with a single query.

The client performs a query for the following URI records:

• _kerberos.REALM for finding KDCs.

• _kerberos-adm.REALM for finding kadmin services.

• _kpasswd.REALM for finding password services.

The URI record includes a priority, weight, and a URI string that consists of case-insensitive colon separated fields, in
the form scheme:[flags]:transport:residual.

• scheme defines the registered URI type. It should always be krb5srv.

• flags contains zero or more flag characters. Currently the only valid flag is m, which indicates that the record is
for a primary server.

• transport defines the transport type of the residual URL or address. Accepted values are tcp, udp, or kkdcp for
the MS-KKDCP type.

• residual contains the hostname, IP address, or URL to be contacted using the specified transport, with an optional
port extension. The MS-KKDCP transport type uses a HTTPS URL, and can include a port and/or path extension.

An example of URI records in a zone file:

_kerberos.EXAMPLE.COM URI 10 1 krb5srv:m:tcp:kdc1.example.com
URI 20 1 krb5srv:m:udp:kdc2.example.com:89
URI 40 1 krb5srv::udp:10.10.0.23
URI 30 1 krb5srv::kkdcp:https://proxy:89/auth

URI lookups are enabled by default, and can be disabled by setting dns_uri_lookup in the [libdefaults] section of
krb5.conf to False. When enabled, URI lookups take precedence over SRV lookups, falling back to SRV lookups if no
URI records are found.

The sitename variable in the [realms] section of krb5.conf applies to URI lookups as well as SRV lookups.

48 Chapter 3. Realm configuration decisions

https://datatracker.ietf.org/doc/html/rfc7553.html

Kerberos Administration Guide, Release 1.22.1

3.7 Database propagation

The Kerberos database resides on the primary KDC, and must be propagated regularly (usually by a cron job) to the
replica KDCs. In deciding how frequently the propagation should happen, you will need to balance the amount of time
the propagation takes against the maximum reasonable amount of time a user should have to wait for a password change
to take effect.

If the propagation time is longer than this maximum reasonable time (e.g., you have a particularly large database, you
have a lot of replicas, or you experience frequent network delays), you may wish to cut down on your propagation
delay by performing the propagation in parallel. To do this, have the primary KDC propagate the database to one set
of replicas, and then have each of these replicas propagate the database to additional replicas.

See also Incremental database propagation

3.7. Database propagation 49

Kerberos Administration Guide, Release 1.22.1

50 Chapter 3. Realm configuration decisions

CHAPTER

FOUR

DATABASE ADMINISTRATION

A Kerberos database contains all of a realm’s Kerberos principals, their passwords, and other administrative information
about each principal. For the most part, you will use the kdb5_util program to manipulate the Kerberos database as a
whole, and the kadmin program to make changes to the entries in the database. (One notable exception is that users
will use the kpasswd(1) program to change their own passwords.) The kadmin program has its own command-line
interface, to which you type the database administrating commands.

kdb5_util provides a means to create, delete, load, or dump a Kerberos database. It also contains commands to roll over
the database master key, and to stash a copy of the key so that the kadmind and krb5kdc daemons can use the database
without manual input.

kadmin provides for the maintenance of Kerberos principals, password policies, and service key tables (keytabs). Nor-
mally it operates as a network client using Kerberos authentication to communicate with kadmind, but there is also a
variant, named kadmin.local, which directly accesses the Kerberos database on the local filesystem (or through LDAP).
kadmin.local is necessary to set up enough of the database to be able to use the remote version.

kadmin can authenticate to the admin server using the service principal kadmin/admin or kadmin/HOST (where HOST
is the hostname of the admin server). If the credentials cache contains a ticket for either service principal and the -c
ccache option is specified, that ticket is used to authenticate to KADM5. Otherwise, the -p and -k options are used
to specify the client Kerberos principal name used to authenticate. Once kadmin has determined the principal name,
it requests a kadmin/admin Kerberos service ticket from the KDC, and uses that service ticket to authenticate to
KADM5.

See kadmin for the available kadmin and kadmin.local commands and options.

4.1 Principals

Each entry in the Kerberos database contains a Kerberos principal and the attributes and policies associated with that
principal.

To add a principal to the database, use the kadmin add_principal command. User principals should usually be created
with the +requires_preauth -allow_svr options to help mitigate dictionary attacks (see Addressing dictionary
attack risks):

kadmin: addprinc +requires_preauth -allow_svr alice
Enter password for principal "alice@KRBTEST.COM":
Re-enter password for principal "alice@KRBTEST.COM":

User principals which will authenticate with PKINIT configuration should instead by created with the -nokey option:

kadmin: addprinc -nokey alice

Service principals can be created with the -nokey option; long-term keys will be added when a keytab is generated:

51

Kerberos Administration Guide, Release 1.22.1

kadmin: addprinc -nokey host/foo.mit.edu
kadmin: ktadd -k foo.keytab host/foo.mit.edu
Entry for principal host/foo.mit.edu with kvno 1, encryption type aes256-cts-hmac-sha1-
→˓96 added to keytab WRFILE:foo.keytab.
Entry for principal host/foo.mit.edu with kvno 1, encryption type aes128-cts-hmac-sha1-
→˓96 added to keytab WRFILE:foo.keytab.

To modify attributes of an existing principal, use the kadmin modify_principal command:

kadmin: modprinc -expire tomorrow alice
Principal "alice@KRBTEST.COM" modified.

To delete a principal, use the kadmin delete_principal command:

kadmin: delprinc alice
Are you sure you want to delete the principal "alice@KRBTEST.COM"? (yes/no): yes
Principal "alice@KRBTEST.COM" deleted.
Make sure that you have removed this principal from all ACLs before reusing.

To change a principal’s password, use the kadmin change_password command. Password changes made through
kadmin are subject to the same password policies as would apply to password changes made through kpasswd(1).

To view the attributes of a principal, use the kadmin` get_principal command.

To generate a listing of principals, use the kadmin list_principals command.

To give a principal additional names, use the kadmin add_alias command to create aliases to the principal (new in
release 1.22). Aliases can be removed with the delete_principal command.

4.2 Policies

A policy is a set of rules governing passwords. Policies can dictate minimum and maximum password lifetimes,
minimum number of characters and character classes a password must contain, and the number of old passwords kept
in the database.

To add a new policy, use the kadmin add_policy command:

kadmin: addpol -maxlife "1 year" -history 3 stduser

To modify attributes of a principal, use the kadmin modify_policy command. To delete a policy, use the kadmin
delete_policy command.

To associate a policy with a principal, use the kadmin modify_principal command with the -policy option:

kadmin: modprinc -policy stduser alice Principal “alice@KRBTEST.COM” modified.

A principal entry may be associated with a nonexistent policy, either because the policy did not exist at the time of
associated or was deleted afterwards. kadmin will warn when associated a principal with a nonexistent policy, and will
annotate the policy name with “[does not exist]” in the get_principal output.

52 Chapter 4. Database administration

mailto:alice@KRBTEST.COM

Kerberos Administration Guide, Release 1.22.1

4.2.1 Updating the history key

If a policy specifies a number of old keys kept of two or more, the stored old keys are encrypted in a history key, which
is found in the key data of the kadmin/history principal.

Currently there is no support for proper rollover of the history key, but you can change the history key (for example, to
use a better encryption type) at the cost of invalidating currently stored old keys. To change the history key, run:

kadmin: change_password -randkey kadmin/history

This command will fail if you specify the -keepold flag. Only one new history key will be created, even if you specify
multiple key/salt combinations.

In the future, we plan to migrate towards encrypting old keys in the master key instead of the history key, and imple-
menting proper rollover support for stored old keys.

4.3 Privileges

Administrative privileges for the Kerberos database are stored in the file kadm5.acl.

Note: A common use of an admin instance is so you can grant separate permissions (such as administrator access to
the Kerberos database) to a separate Kerberos principal. For example, the user joeadmin might have a principal for his
administrative use, called joeadmin/admin. This way, joeadmin would obtain joeadmin/admin tickets only when
he actually needs to use those permissions.

4.4 Operations on the Kerberos database

The kdb5_util command is the primary tool for administrating the Kerberos database when using the DB2 or LMDB
modules (see Database types). Creating a database is described in Create the KDC database.

To create a stash file using the master password (because the database was not created with one using the create -s
flag, or after restoring from a backup which did not contain the stash file), use the kdb5_util stash command:

$ kdb5_util stash
kdb5_util: Cannot find/read stored master key while reading master key
kdb5_util: Warning: proceeding without master key
Enter KDC database master key: <= Type the KDC database master password.

To destroy a database, use the kdb5_util destroy command:

$ kdb5_util destroy
Deleting KDC database stored in '/var/krb5kdc/principal', are you sure?
(type 'yes' to confirm)? yes
OK, deleting database '/var/krb5kdc/principal'...
** Database '/var/krb5kdc/principal' destroyed.

4.3. Privileges 53

Kerberos Administration Guide, Release 1.22.1

4.4.1 Dumping and loading a Kerberos database

To dump a Kerberos database into a text file for backup or transfer purposes, use the kdb5_util dump command on one
of the KDCs:

$ kdb5_util dump dumpfile

$ kbd5_util dump -verbose dumpfile
kadmin/admin@ATHENA.MIT.EDU
krbtgt/ATHENA.MIT.EDU@ATHENA.MIT.EDU
kadmin/history@ATHENA.MIT.EDU
K/M@ATHENA.MIT.EDU
kadmin/changepw@ATHENA.MIT.EDU

You may specify which principals to dump, using full principal names including realm:

$ kdb5_util dump -verbose someprincs K/M@ATHENA.MIT.EDU kadmin/admin@ATHENA.MIT.EDU
kadmin/admin@ATHENA.MIT.EDU
K/M@ATHENA.MIT.EDU

To restore a Kerberos database dump from a file, use the kdb5_util load command:

$ kdb5_util load dumpfile

To update an existing database with a partial dump file containing only some principals, use the -update flag:

$ kdb5_util load -update someprincs

Note: If the database file exists, and the -update flag was not given, kdb5_util will overwrite the existing database.

4.4.2 Updating the master key

Starting with release 1.7, kdb5_util allows the master key to be changed using a rollover process, with minimal loss of
availability. To roll over the master key, follow these steps:

1. On the primary KDC, run kdb5_util list_mkeys to view the current master key version number (KVNO). If
you have never rolled over the master key before, this will likely be version 1:

$ kdb5_util list_mkeys
Master keys for Principal: K/M@KRBTEST.COM
KVNO: 1, Enctype: aes256-cts-hmac-sha384-192, Active on: Thu Jan 01 00:00:00 UTC␣
→˓1970 *

2. On the primary KDC, run kdb5_util use_mkey 1 to ensure that a master key activation list is present in the
database. This step is unnecessary in release 1.11.4 or later, or if the database was initially created with release
1.7 or later.

3. On the primary KDC, run kdb5_util add_mkey -s to create a new master key and write it to the stash file.
Enter a secure password when prompted. If this is the first time you are changing the master key, the new key
will have version 2. The new master key will not be used until you make it active.

4. Propagate the database to all replica KDCs, either manually or by waiting until the next scheduled propagation.
If you do not have any replica KDCs, you can skip this and the next step.

54 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.22.1

5. On each replica KDC, run kdb5_util list_mkeys to verify that the new master key is present, and then
kdb5_util stash to write the new master key to the replica KDC’s stash file.

6. On the primary KDC, run kdb5_util use_mkey 2 to begin using the new master key. Replace 2 with the
version of the new master key, as appropriate. You can optionally specify a date for the new master key to
become active; by default, it will become active immediately. Prior to release 1.12, kadmind must be restarted
for this change to take full effect.

7. On the primary KDC, run kdb5_util update_princ_encryption. This command will iterate over the
database and re-encrypt all keys in the new master key. If the database is large and uses DB2, the primary
KDC will become unavailable while this command runs, but clients should fail over to replica KDCs (if any are
present) during this time period. In release 1.13 and later, you can instead run kdb5_util -x unlockiter
update_princ_encryption to use unlocked iteration; this variant will take longer, but will keep the database
available to the KDC and kadmind while it runs.

8. Wait until the above changes have propagated to all replica KDCs and until all running KDC and kadmind
processes have serviced requests using updated principal entries.

9. On the primary KDC, run kdb5_util purge_mkeys to clean up the old master key.

4.5 Operations on the LDAP database

The kdb5_ldap_util command is the primary tool for administrating the Kerberos database when using the LDAP
module. Creating an LDAP Kerberos database is describe in Configuring Kerberos with OpenLDAP back-end.

To view a list of realms in the LDAP database, use the kdb5_ldap_util list command:

$ kdb5_ldap_util list
KRBTEST.COM

To modify the attributes of a realm, use the kdb5_ldap_util modify command. For example, to change the default
realm’s maximum ticket life:

$ kdb5_ldap_util modify -maxtktlife "10 hours"

To display the attributes of a realm, use the kdb5_ldap_util view command:

$ kdb5_ldap_util view
Realm Name: KRBTEST.COM

Maximum Ticket Life: 0 days 00:10:00

To remove a realm from the LDAP database, destroying its contents, use the kdb5_ldap_util destroy command:

$ kdb5_ldap_util destroy
Deleting KDC database of 'KRBTEST.COM', are you sure?
(type 'yes' to confirm)? yes
OK, deleting database of 'KRBTEST.COM'...
** Database of 'KRBTEST.COM' destroyed.

4.5. Operations on the LDAP database 55

Kerberos Administration Guide, Release 1.22.1

4.5.1 Ticket Policy operations

Unlike the DB2 and LMDB modules, the LDAP module supports ticket policy objects, which can be associated with
principals to restrict maximum ticket lifetimes and set mandatory principal flags. Ticket policy objects are distinct
from the password policies described earlier on this page, and are chiefly managed through kdb5_ldap_util rather than
kadmin. To create a new ticket policy, use the kdb5_ldap_util create_policy command:

$ kdb5_ldap_util create_policy -maxrenewlife "2 days" users

To associate a ticket policy with a principal, use the kadmin modify_principal (or add_principal) command with the
-x tktpolicy=policy option:

$ kadmin.local modprinc -x tktpolicy=users alice

To remove a ticket policy reference from a principal, use the same command with an empty policy:

$ kadmin.local modprinc -x tktpolicy= alice

To list the existing ticket policy objects, use the kdb5_ldap_util list_policy command:

$ kdb5_ldap_util list_policy
users

To modify the attributes of a ticket policy object, use the kdb5_ldap_util modify_policy command:

$ kdb5_ldap_util modify_policy -allow_svr +requires_preauth users

To view the attributes of a ticket policy object, use the kdb5_ldap_util view_policy command:

$ kdb5_ldap_util view_policy users
Ticket policy: users

Maximum renewable life: 2 days 00:00:00
Ticket flags: REQUIRES_PRE_AUTH DISALLOW_SVR

To destroy an ticket policy object, use the kdb5_ldap_util destroy_policy command:

$ kdb5_ldap_util destroy_policy users
This will delete the policy object 'users', are you sure?
(type 'yes' to confirm)? yes
** policy object 'users' deleted.

4.6 Cross-realm authentication

In order for a KDC in one realm to authenticate Kerberos users in a different realm, it must share a key with the KDC
in the other realm. In both databases, there must be krbtgt service principals for both realms. For example, if you
need to do cross-realm authentication between the realms ATHENA.MIT.EDU and EXAMPLE.COM, you would need to
add the principals krbtgt/EXAMPLE.COM@ATHENA.MIT.EDU and krbtgt/ATHENA.MIT.EDU@EXAMPLE.COM to both
databases. These principals must all have the same passwords, key version numbers, and encryption types; this may
require explicitly setting the key version number with the -kvno option.

In the ATHENA.MIT.EDU and EXAMPLE.COM cross-realm case, the administrators would run the following com-
mands on the KDCs in both realms:

56 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.22.1

shell%: kadmin.local -e "aes256-cts:normal"
kadmin: addprinc -requires_preauth krbtgt/ATHENA.MIT.EDU@EXAMPLE.COM
Enter password for principal krbtgt/ATHENA.MIT.EDU@EXAMPLE.COM:
Re-enter password for principal krbtgt/ATHENA.MIT.EDU@EXAMPLE.COM:
kadmin: addprinc -requires_preauth krbtgt/EXAMPLE.COM@ATHENA.MIT.EDU
Enter password for principal krbtgt/EXAMPLE.COM@ATHENA.MIT.EDU:
Enter password for principal krbtgt/EXAMPLE.COM@ATHENA.MIT.EDU:
kadmin:

Note: Even if most principals in a realm are generally created with the requires_preauth flag enabled, this flag is
not desirable on cross-realm authentication keys because doing so makes it impossible to disable preauthentication on
a service-by-service basis. Disabling it as in the example above is recommended.

Note: It is very important that these principals have good passwords. MIT recommends that TGT principal passwords
be at least 26 characters of random ASCII text.

4.7 Changing the krbtgt key

A Kerberos Ticket Granting Ticket (TGT) is a service ticket for the principal krbtgt/REALM. The key for this principal
is created when the Kerberos database is initialized and need not be changed. However, it will only have the encryption
types supported by the KDC at the time of the initial database creation. To allow use of newer encryption types for the
TGT, this key has to be changed.

Changing this key using the normal kadmin change_password command would invalidate any previously issued TGTs.
Therefore, when changing this key, normally one should use the -keepold flag to change_password to retain the previous
key in the database as well as the new key. For example:

kadmin: change_password -randkey -keepold krbtgt/ATHENA.MIT.EDU@ATHENA.MIT.EDU

Warning: After issuing this command, the old key is still valid and is still vulnerable to (for instance) brute force
attacks. To completely retire an old key or encryption type, run the kadmin purgekeys command to delete keys
with older kvnos, ideally first making sure that all tickets issued with the old keys have expired.

Only the first krbtgt key of the newest key version is used to encrypt ticket-granting tickets. However, the set of en-
cryption types present in the krbtgt keys is used by default to determine the session key types supported by the krbtgt
service (see Session key selection). Because non-MIT Kerberos clients sometimes send a limited set of encryption
types when making AS requests, it can be important for the krbtgt service to support multiple encryption types. This
can be accomplished by giving the krbtgt principal multiple keys, which is usually as simple as not specifying any -e
option when changing the krbtgt key, or by setting the session_enctypes string attribute on the krbtgt principal (see
set_string).

Due to a bug in releases 1.8 through 1.13, renewed and forwarded tickets may not work if the original ticket was obtained
prior to a krbtgt key change and the modified ticket is obtained afterwards. Upgrading the KDC to release 1.14 or later
will correct this bug.

4.7. Changing the krbtgt key 57

Kerberos Administration Guide, Release 1.22.1

4.8 Incremental database propagation

4.8.1 Overview

At some very large sites, dumping and transmitting the database can take more time than is desirable for changes to
propagate from the primary KDC to the replica KDCs. The incremental propagation support added in the 1.7 release
is intended to address this.

With incremental propagation enabled, all programs on the primary KDC that change the database also write infor-
mation about the changes to an “update log” file, maintained as a circular buffer of a certain size. A process on each
replica KDC connects to a service on the primary KDC (currently implemented in the kadmind server) and periodically
requests the changes that have been made since the last check. By default, this check is done every two minutes.

Incremental propagation uses the following entries in the per-realm data in the KDC config file (See kdc.conf):

iprop_enablebooleanIf true, then incremental propagation is enabled, and (as noted below) normal kprop propagation is
disabled. The default is false.

iprop_master_ulogsizein-
te-
ger

Indicates the number of entries that should be retained in the update log. The default is 1000; the
maximum number is 2500.

iprop_replica_polltime
in-
ter-
val

Indicates how often the replica should poll the primary KDC for changes to the database. The default
is two minutes.

iprop_portin-
te-
ger

Specifies the port number to be used for incremental propagation. This is required in both primary
and replica configuration files.

iprop_resync_timeoutin-
te-
ger

Specifies the number of seconds to wait for a full propagation to complete. This is optional on replica
configurations. Defaults to 300 seconds (5 minutes).

iprop_logfilefile
name

Specifies where the update log file for the realm database is to be stored. The default is to use
the database_name entry from the realms section of the config file kdc.conf , with .ulog appended.
(NOTE: If database_name isn’t specified in the realms section, perhaps because the LDAP database
back end is being used, or the file name is specified in the dbmodules section, then the hard-coded de-
fault for database_name is used. Determination of the iprop_logfile default value will not use values
from the dbmodules section.)

Both primary and replica sides must have a principal named kiprop/hostname (where hostname is the lowercase,
fully-qualified, canonical name for the host) registered in the Kerberos database, and have keys for that principal stored
in the default keytab file (DEFKTNAME). The kiprop/hostname principal may have been created automatically for
the primary KDC, but it must always be created for replica KDCs.

On the primary KDC side, the kiprop/hostname principal must be listed in the kadmind ACL file kadm5.acl, and
given the p privilege (see Privileges).

On the replica KDC side, kpropd should be run. When incremental propagation is enabled, it will connect to the
kadmind on the primary KDC and start requesting updates.

The normal kprop mechanism is disabled by the incremental propagation support. However, if the replica has been
unable to fetch changes from the primary KDC for too long (network problems, perhaps), the log on the primary may
wrap around and overwrite some of the updates that the replica has not yet retrieved. In this case, the replica will
instruct the primary KDC to dump the current database out to a file and invoke a one-time kprop propagation, with
special options to also convey the point in the update log at which the replica should resume fetching incremental
updates. Thus, all the keytab and ACL setup previously described for kprop propagation is still needed.

58 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.22.1

If an environment has a large number of replicas, it may be desirable to arrange them in a hierarchy instead of having
the primary serve updates to every replica. To do this, run kadmind -proponly on each intermediate replica, and
kpropd -A upstreamhostname on downstream replicas to direct each one to the appropriate upstream replica.

There are several known restrictions in the current implementation:

• The incremental update protocol does not transport changes to policy objects. Any policy changes on the primary
will result in full resyncs to all replicas.

• The replica’s KDB module must support locking; it cannot be using the LDAP KDB module.

• The primary and replica must be able to initiate TCP connections in both directions, without an intervening NAT.

4.8.2 Sun/MIT incremental propagation differences

Sun donated the original code for supporting incremental database propagation to MIT. Some changes have been made
in the MIT source tree that will be visible to administrators. (These notes are based on Sun’s patches. Changes to Sun’s
implementation since then may not be reflected here.)

The Sun config file support looks for sunw_dbprop_enable, sunw_dbprop_master_ulogsize, and
sunw_dbprop_slave_poll.

The incremental propagation service is implemented as an ONC RPC service. In the Sun implementation, the service
is registered with rpcbind (also known as portmapper) and the client looks up the port number to contact. In the MIT
implementation, where interaction with some modern versions of rpcbind doesn’t always work well, the port number
must be specified in the config file on both the primary and replica sides.

The Sun implementation hard-codes pathnames in /var/krb5 for the update log and the per-replica kprop dump files.
In the MIT implementation, the pathname for the update log is specified in the config file, and the per-replica dump
files are stored in LOCALSTATEDIR/krb5kdc/replica_datatrans_hostname.

4.8. Incremental database propagation 59

Kerberos Administration Guide, Release 1.22.1

60 Chapter 4. Database administration

CHAPTER

FIVE

DATABASE TYPES

A Kerberos database can be implemented with one of three built-in database providers, called KDB modules. Software
which incorporates the MIT krb5 KDC may also provide its own KDB module. The following subsections describe
the three built-in KDB modules and the configuration specific to them.

The database type can be configured with the db_library variable in the [dbmodules] subsection for the realm. For
example:

[dbmodules]
ATHENA.MIT.EDU = {

db_library = db2
}

If the ATHENA.MIT.EDU realm subsection contains a database_module setting, then the subsection within
[dbmodules] should use that name instead of ATHENA.MIT.EDU.

To transition from one database type to another, stop the kadmind service, use kdb5_util dump to create a dump
file, change the db_library value and set any appropriate configuration for the new database type, and use kdb5_util
load to create and populate the new database. If the new database type is LDAP, create the new database using
kdb5_ldap_util and populate it from the dump file using kdb5_util load -update. Then restart the krb5kdc and
kadmind services.

5.1 Berkeley database module (db2)

The default KDB module is db2, which uses a version of the Berkeley DB library. It creates four files based on the
database pathname. If the pathname ends with principal then the four files are:

• principal, containing principal entry data

• principal.ok, a lock file for the principal database

• principal.kadm5, containing policy object data

• principal.kadm5.lock, a lock file for the policy database

For large databases, the kdb5_util dump command (perhaps invoked by kprop or by kadmind for incremental propa-
gation) may cause krb5kdc to stop for a noticeable period of time while it iterates over the database. This delay can be
avoided by disabling account lockout features so that the KDC does not perform database writes (see KDC performance
and account lockout). Alternatively, a slower form of iteration can be enabled by setting the unlockiter variable to
true. For example:

[dbmodules]
ATHENA.MIT.EDU = {

(continues on next page)

61

Kerberos Administration Guide, Release 1.22.1

(continued from previous page)

db_library = db2
unlockiter = true

}

In rare cases, a power failure or other unclean system shutdown may cause inconsistencies in the internal pointers within
a database file, such that kdb5_util dump cannot retrieve all principal entries in the database. In this situation, it may
be possible to retrieve all of the principal data by running kdb5_util dump -recurse to iterate over the database
using the tree pointers instead of the iteration pointers. Running kdb5_util dump -rev to iterate over the database
backwards may also retrieve some of the data which is not retrieved by a normal dump operation.

5.2 Lightning Memory-Mapped Database module (klmdb)

The klmdb module was added in release 1.17. It uses the LMDB library, and may offer better performance and reliability
than the db2 module. It creates four files based on the database pathname. If the pathname ends with principal, then
the four files are:

• principal.mdb, containing policy object data and most principal entry data

• principal.mdb-lock, a lock file for the primary database

• principal.lockout.mdb, containing the account lockout attributes (last successful authentication time, last
failed authentication time, and number of failed attempts) for each principal entry

• principal.lockout.mdb-lock, a lock file for the lockout database

Separating out the lockout attributes ensures that the KDC will never block on an administrative operation such as a
database dump or load. It also allows the KDC to operate without write access to the primary database. If both account
lockout features are disabled (see KDC performance and account lockout), the lockout database files will be created
but will not subsequently be opened, and the account lockout attributes will always have zero values.

Because LMDB creates a memory map to the database files, it requires a configured memory map size which also
determines the maximum size of the database. This size is applied equally to the two databases, so twice the configured
size will be consumed in the process address space; this is primarily a limitation on 32-bit platforms. The default value
of 128 megabytes should be sufficient for several hundred thousand principal entries. If the limit is reached, kadmin
operations will fail and the error message “Environment mapsize limit reached” will appear in the kadmind log file. In
this case, the mapsize variable can be used to increase the map size. The following example sets the map size to 512
megabytes:

[dbmodules]
ATHENA.MIT.EDU = {

db_library = klmdb
mapsize = 512

}

LMDB has a configurable maximum number of readers. The default value of 128 should be sufficient for most deploy-
ments. If you are going to use a large number of KDC worker processes, it may be necessary to set the max_readers
variable to a larger number.

By default, LMDB synchronizes database files to disk after each write transaction to ensure durability in the case of
an unclean system shutdown. The klmdb module always turns synchronization off for the lockout database to ensure
reasonable KDC performance, but leaves it on for the primary database. If high throughput for administrative operations
(including password changes) is required, the nosync variable can be set to “true” to disable synchronization for the
primary database.

The klmdb module does not support explicit locking with the kadmin lock command.

62 Chapter 5. Database types

Kerberos Administration Guide, Release 1.22.1

5.3 LDAP module (kldap)

The kldap module stores principal and policy data using an LDAP server. To use it you must configure an LDAP server
to use the Kerberos schema. See Configuring Kerberos with OpenLDAP back-end for details.

Because krb5kdc is single-threaded, latency in LDAP database accesses may limit KDC operation throughput. If the
LDAP server is located on the same server host as the KDC and accessed through an ldapi:// URL, latency should
be minimal. If this is not possible, consider starting multiple KDC worker processes with the krb5kdc -w option to
enable concurrent processing of KDC requests.

The kldap module does not support explicit locking with the kadmin lock command.

5.3. LDAP module (kldap) 63

Kerberos Administration Guide, Release 1.22.1

64 Chapter 5. Database types

CHAPTER

SIX

ACCOUNT LOCKOUT

As of release 1.8, the KDC can be configured to lock out principals after a number of failed authentication attempts
within a period of time. Account lockout can make it more difficult to attack a principal’s password by brute force, but
also makes it easy for an attacker to deny access to a principal.

6.1 Configuring account lockout

Account lockout only works for principals with the +requires_preauth flag set. Without this flag, the KDC cannot
know whether or not a client successfully decrypted the ticket it issued. It is also important to set the -allow_svr flag
on a principal to protect its password from an off-line dictionary attack through a TGS request. You can set these flags
on a principal with kadmin as follows:

kadmin: modprinc +requires_preauth -allow_svr PRINCNAME

Account lockout parameters are configured via policy objects. There may be an existing policy associated with user
principals (such as the “default” policy), or you may need to create a new one and associate it with each user principal.

The policy parameters related to account lockout are:

• maxfailure: the number of failed attempts before the principal is locked out

• failurecountinterval: the allowable interval between failed attempts

• lockoutduration: the amount of time a principal is locked out for

Here is an example of setting these parameters on a new policy and associating it with a principal:

kadmin: addpol -maxfailure 10 -failurecountinterval 180
-lockoutduration 60 lockout_policy

kadmin: modprinc -policy lockout_policy PRINCNAME

6.2 Testing account lockout

To test that account lockout is working, try authenticating as the principal (hopefully not one that might be in use)
multiple times with the wrong password. For instance, if maxfailure is set to 2, you might see:

$ kinit user
Password for user@KRBTEST.COM:
kinit: Password incorrect while getting initial credentials
$ kinit user

(continues on next page)

65

Kerberos Administration Guide, Release 1.22.1

(continued from previous page)

Password for user@KRBTEST.COM:
kinit: Password incorrect while getting initial credentials
$ kinit user
kinit: Client's credentials have been revoked while getting initial credentials

6.3 Account lockout principal state

A principal entry keeps three pieces of state related to account lockout:

• The time of last successful authentication

• The time of last failed authentication

• A counter of failed attempts

The time of last successful authentication is not actually needed for the account lockout system to function, but may be
of administrative interest. These fields can be observed with the getprinc kadmin command. For example:

kadmin: getprinc user
Principal: user@KRBTEST.COM
...
Last successful authentication: [never]
Last failed authentication: Mon Dec 03 12:30:33 EST 2012
Failed password attempts: 2
...

A principal which has been locked out can be administratively unlocked with the -unlock option to the modprinc
kadmin command:

kadmin: modprinc -unlock PRINCNAME

This command will reset the number of failed attempts to 0.

6.4 KDC replication and account lockout

The account lockout state of a principal is not replicated by either traditional kprop or incremental propagation. Because
of this, the number of attempts an attacker can make within a time period is multiplied by the number of KDCs. For
instance, if the maxfailure parameter on a policy is 10 and there are four KDCs in the environment (a primary and
three replicas), an attacker could make as many as 40 attempts before the principal is locked out on all four KDCs.

An administrative unlock is propagated from the primary to the replica KDCs during the next propagation. Propagation
of an administrative unlock will cause the counter of failed attempts on each replica to reset to 1 on the next failure.

If a KDC environment uses a replication strategy other than kprop or incremental propagation, such as the LDAP
KDB module with multi-master LDAP replication, then account lockout state may be replicated between KDCs and
the concerns of this section may not apply.

66 Chapter 6. Account lockout

Kerberos Administration Guide, Release 1.22.1

6.5 KDC performance and account lockout

In order to fully track account lockout state, the KDC must write to the the database on each successful and failed
authentication. Writing to the database is generally more expensive than reading from it, so these writes may have
a significant impact on KDC performance. As of release 1.9, it is possible to turn off account lockout state tracking
in order to improve performance, by setting the disable_last_success and disable_lockout variables in the database
module subsection of kdc.conf . For example:

[dbmodules]
DB = {

disable_last_success = true
disable_lockout = true

}

Of the two variables, setting disable_last_success will usually have the largest positive impact on performance, and
will still allow account lockout policies to operate. However, it will make it impossible to observe the last successful
authentication time with kadmin.

6.6 KDC setup and account lockout

To update the account lockout state on principals, the KDC must be able to write to the principal database. For the
DB2 module, no special setup is required. For the LDAP module, the KDC DN must be granted write access to the
principal objects. If the KDC DN has only read access, account lockout will not function.

6.5. KDC performance and account lockout 67

Kerberos Administration Guide, Release 1.22.1

68 Chapter 6. Account lockout

CHAPTER

SEVEN

CONFIGURING KERBEROS WITH OPENLDAP BACK-END

1. Make sure the LDAP server is using local authentication (ldapi://) or TLS (ldaps). See https://www.
openldap.org/doc/admin/tls.html for instructions on configuring TLS support in OpenLDAP.

2. Add the Kerberos schema file to the LDAP Server using the OpenLDAP LDIF file from the krb5 source di-
rectory (src/plugins/kdb/ldap/libkdb_ldap/kerberos.openldap.ldif). The following example uses
local authentication:

ldapadd -Y EXTERNAL -H ldapi:/// -f /path/to/kerberos.openldap.ldif

3. Choose DNs for the krb5kdc and kadmind servers to bind to the LDAP server, and create them if necessary.
Specify these DNs with the ldap_kdc_dn and ldap_kadmind_dn directives in kdc.conf . The kadmind DN will
also be used for administrative commands such as kdb5_util.

Alternatively, you may configure krb5kdc and kadmind to use SASL authentication to access the LDAP server;
see the [dbmodules] relations ldap_kdc_sasl_mech and similar.

4. Specify a location for the LDAP service password file by setting ldap_service_password_file. Use
kdb5_ldap_util stashsrvpw to stash passwords for the KDC and kadmind DNs chosen above. For example:

kdb5_ldap_util stashsrvpw -f /path/to/service.keyfile cn=krbadmin,dc=example,dc=com

Skip this step if you are using SASL authentication and the mechanism does not require a password.

5. Choose a DN for the global Kerberos container entry (but do not create the entry at this time). Specify this DN
with the ldap_kerberos_container_dn directive in kdc.conf . Realm container entries will be created under-
neath this DN. Principal entries may exist either underneath the realm container (the default) or in separate trees
referenced from the realm container.

6. Configure the LDAP server ACLs to enable the KDC and kadmin server DNs to read and write the Kerberos
data. If disable_last_success and disable_lockout are both set to true in the [dbmodules] subsection for the
realm, then the KDC DN only requires read access to the Kerberos data.

Sample access control information:

access to dn.base=""
by * read

access to dn.base="cn=Subschema"
by * read

Provide access to the realm container.
access to dn.subtree= "cn=EXAMPLE.COM,cn=krbcontainer,dc=example,dc=com"

by dn.exact="cn=kdc-service,dc=example,dc=com" write
by dn.exact="cn=adm-service,dc=example,dc=com" write

(continues on next page)

69

https://www.openldap.org/doc/admin/tls.html
https://www.openldap.org/doc/admin/tls.html

Kerberos Administration Guide, Release 1.22.1

(continued from previous page)

by * none

Provide access to principals, if not underneath the realm container.
access to dn.subtree= "ou=users,dc=example,dc=com"

by dn.exact="cn=kdc-service,dc=example,dc=com" write
by dn.exact="cn=adm-service,dc=example,dc=com" write
by * none

access to *
by * read

If the locations of the container and principals or the DNs of the service objects for a realm are changed then this
information should be updated.

7. In kdc.conf , make sure the following relations are set in the [dbmodules] subsection for the realm:

db_library (set to ``kldap``)
ldap_kerberos_container_dn
ldap_kdc_dn
ldap_kadmind_dn
ldap_service_password_file
ldap_servers

8. Create the realm using kdb5_ldap_util:

kdb5_ldap_util create -subtrees ou=users,dc=example,dc=com -s

Use the -subtrees option if the principals are to exist in a separate subtree from the realm container. Before
executing the command, make sure that the subtree mentioned above (ou=users,dc=example,dc=com) exists.
If the principals will exist underneath the realm container, omit the -subtrees option and do not worry about
creating the principal subtree.

For more information, refer to the section Operations on the LDAP database.

The realm object is created under the ldap_kerberos_container_dn specified in the configuration file. This
operation will also create the Kerberos container, if not present already. This container can be used to store
information related to multiple realms.

9. Add an eq index for krbPrincipalName to speed up principal lookup operations. See https://www.openldap.
org/doc/admin/tuning.html#Indexes for details.

With the LDAP back end it is possible to provide aliases for principal entries. Beginning in release 1.22, aliases can be
added with the kadmin add_alias command, but it is also possible (in release 1.7 or later) to provide aliases through
direct manipulation of the LDAP entries.

An entry with aliases contains multiple values of the krbPrincipalName attribute. Since LDAP attribute values are not
ordered, it is necessary to specify which principal name is canonical, by using the krbCanonicalName attribute. There-
fore, to create aliases for an entry, first set the krbCanonicalName attribute of the entry to the canonical principal name
(which should be identical to the pre-existing krbPrincipalName value), and then add additional krbPrincipalName
attributes for the aliases.

Principal aliases are only returned by the KDC when the client requests canonicalization. Canonicalization is normally
requested for service principals; for client principals, an explicit flag is often required (e.g., kinit -C) and canonical-
ization is only performed for initial ticket requests.

70 Chapter 7. Configuring Kerberos with OpenLDAP back-end

https://www.openldap.org/doc/admin/tuning.html#Indexes
https://www.openldap.org/doc/admin/tuning.html#Indexes

CHAPTER

EIGHT

APPLICATION SERVERS

If you need to install the Kerberos V5 programs on an application server, please refer to the Kerberos V5 Installation
Guide. Once you have installed the software, you need to add that host to the Kerberos database (see Principals), and
generate a keytab for that host, that contains the host’s key. You also need to make sure the host’s clock is within your
maximum clock skew of the KDCs.

8.1 Keytabs

A keytab is a host’s copy of its own keylist, which is analogous to a user’s password. An application server that needs
to authenticate itself to the KDC has to have a keytab that contains its own principal and key. Just as it is important
for users to protect their passwords, it is equally important for hosts to protect their keytabs. You should always store
keytab files on local disk, and make them readable only by root, and you should never send a keytab file over a network
in the clear. Ideally, you should run the kadmin command to extract a keytab on the host on which the keytab is to
reside.

8.1.1 Adding principals to keytabs

To generate a keytab, or to add a principal to an existing keytab, use the ktadd command from kadmin. Here is a
sample session, using configuration files that enable only AES encryption:

kadmin: ktadd host/daffodil.mit.edu@ATHENA.MIT.EDU
Entry for principal host/daffodil.mit.edu with kvno 2, encryption type aes256-cts-hmac-
→˓sha1-96 added to keytab FILE:/etc/krb5.keytab
Entry for principal host/daffodil.mit.edu with kvno 2, encryption type aes128-cts-hmac-
→˓sha1-96 added to keytab FILE:/etc/krb5.keytab

8.1.2 Removing principals from keytabs

To remove a principal from an existing keytab, use the kadmin ktremove command:

kadmin: ktremove host/daffodil.mit.edu@ATHENA.MIT.EDU
Entry for principal host/daffodil.mit.edu with kvno 2 removed from keytab FILE:/etc/krb5.
→˓keytab.
Entry for principal host/daffodil.mit.edu with kvno 2 removed from keytab FILE:/etc/krb5.
→˓keytab.

71

Kerberos Administration Guide, Release 1.22.1

8.1.3 Using a keytab to acquire client credentials

While keytabs are ordinarily used to accept credentials from clients, they can also be used to acquire initial credentials,
allowing one service to authenticate to another.

To manually obtain credentials using a keytab, use the kinit(1) -k option, together with the -t option if the keytab is not
in the default location.

Beginning with release 1.11, GSSAPI applications can be configured to automatically obtain initial credentials from a
keytab as needed. The recommended configuration is as follows:

1. Create a keytab containing a single entry for the desired client identity.

2. Place the keytab in a location readable by the service, and set the KRB5_CLIENT_KTNAME environment
variable to its filename. Alternatively, use the default_client_keytab_name profile variable in [libdefaults], or
use the default location of DEFCKTNAME.

3. Set KRB5CCNAME to a filename writable by the service, which will not be used for any other purpose. Do not
manually obtain credentials at this location. (Another credential cache type besides FILE can be used if desired,
as long the cache will not conflict with another use. A MEMORY cache can be used if the service runs as a
long-lived process. See ccache_definition for details.)

4. Start the service. When it authenticates using GSSAPI, it will automatically obtain credentials from the client
keytab into the specified credential cache, and refresh them before they expire.

8.2 Clock Skew

A Kerberos application server host must keep its clock synchronized or it will reject authentication requests from
clients. Modern operating systems typically provide a facility to maintain the correct time; make sure it is enabled.
This is especially important on virtual machines, where clocks tend to drift more rapidly than normal machine clocks.

The default allowable clock skew is controlled by the clockskew variable in [libdefaults].

8.3 Getting DNS information correct

Several aspects of Kerberos rely on name service. When a hostname is used to name a service, clients may canonicalize
the hostname using forward and possibly reverse name resolution. The result of this canonicalization must match the
principal entry in the host’s keytab, or authentication will fail. To work with all client canonicalization configurations,
each host’s canonical name must be the fully-qualified host name (including the domain), and each host’s IP address
must reverse-resolve to the canonical name.

Configuration of hostnames varies by operating system. On the application server itself, canonicalization will typically
use the /etc/hosts file rather than the DNS. Ensure that the line for the server’s hostname is in the following form:

IP address fully-qualified hostname aliases

Here is a sample /etc/hosts file:

this is a comment
127.0.0.1 localhost localhost.mit.edu
10.0.0.6 daffodil.mit.edu daffodil trillium wake-robin

The output of klist -k for this example host should look like:

72 Chapter 8. Application servers

Kerberos Administration Guide, Release 1.22.1

viola# klist -k
Keytab name: /etc/krb5.keytab
KVNO Principal
---- --

2 host/daffodil.mit.edu@ATHENA.MIT.EDU

If you were to ssh to this host with a fresh credentials cache (ticket file), and then klist(1), the output should list a service
principal of host/daffodil.mit.edu@ATHENA.MIT.EDU.

8.4 Configuring your firewall to work with Kerberos V5

If you need off-site users to be able to get Kerberos tickets in your realm, they must be able to get to your KDC. This
requires either that you have a replica KDC outside your firewall, or that you configure your firewall to allow UDP
requests into at least one of your KDCs, on whichever port the KDC is running. (The default is port 88; other ports
may be specified in the KDC’s kdc.conf file.) Similarly, if you need off-site users to be able to change their passwords
in your realm, they must be able to get to your Kerberos admin server on the kpasswd port (which defaults to 464). If
you need off-site users to be able to administer your Kerberos realm, they must be able to get to your Kerberos admin
server on the administrative port (which defaults to 749).

If your on-site users inside your firewall will need to get to KDCs in other realms, you will also need to configure
your firewall to allow outgoing TCP and UDP requests to port 88, and to port 464 to allow password changes. If your
on-site users inside your firewall will need to get to Kerberos admin servers in other realms, you will also need to allow
outgoing TCP and UDP requests to port 749.

If any of your KDCs are outside your firewall, you will need to allow kprop requests to get through to the remote KDC.
kprop uses the krb5_prop service on port 754 (tcp).

The book UNIX System Security, by David Curry, is a good starting point for learning to configure firewalls.

8.4. Configuring your firewall to work with Kerberos V5 73

Kerberos Administration Guide, Release 1.22.1

74 Chapter 8. Application servers

CHAPTER

NINE

HOST CONFIGURATION

All hosts running Kerberos software, whether they are clients, application servers, or KDCs, can be configured using
krb5.conf . Here we describe some of the behavior changes you might want to make.

9.1 Default realm

In the [libdefaults] section, the default_realm realm relation sets the default Kerberos realm. For example:

[libdefaults]
default_realm = ATHENA.MIT.EDU

The default realm affects Kerberos behavior in the following ways:

• When a principal name is parsed from text, the default realm is used if no @REALM component is specified.

• The default realm affects login authorization as described below.

• For programs which operate on a Kerberos database, the default realm is used to determine which database to
operate on, unless the -r parameter is given to specify a realm.

• A server program may use the default realm when looking up its key in a keytab file, if its realm is not determined
by [domain_realm] configuration or by the server program itself.

• If kinit(1) is passed the -n flag, it requests anonymous tickets from the default realm.

In some situations, these uses of the default realm might conflict. For example, it might be desirable for principal name
parsing to use one realm by default, but for login authorization to use a second realm. In this situation, the first realm
can be configured as the default realm, and auth_to_local relations can be used as described below to use the second
realm for login authorization.

9.2 Login authorization

If a host runs a Kerberos-enabled login service such as OpenSSH with GSSAPIAuthentication enabled, login autho-
rization rules determine whether a Kerberos principal is allowed to access a local account.

By default, a Kerberos principal is allowed access to an account if its realm matches the default realm and its name
matches the account name. (For historical reasons, access is also granted by default if the name has two components
and the second component matches the default realm; for instance, alice/ATHENA.MIT.EDU@ATHENA.MIT.EDU is
granted access to the alice account if ATHENA.MIT.EDU is the default realm.)

The simplest way to control local access is using .k5login(5) files. To use these, place a .k5login file in the home
directory of each account listing the principal names which should have login access to that account. If it is not desirable

75

Kerberos Administration Guide, Release 1.22.1

to use .k5login files located in account home directories, the k5login_directory relation in the [libdefaults] section
can specify a directory containing one file per account uname.

By default, if a .k5login file is present, it controls authorization both positively and negatively–any principal name
contained in the file is granted access and any other principal name is denied access, even if it would have had access
if the .k5login file didn’t exist. The k5login_authoritative relation in the [libdefaults] section can be set to false to
make .k5login files provide positive authorization only.

The auth_to_local relation in the [realms] section for the default realm can specify pattern-matching rules to control
login authorization. For example, the following configuration allows access to principals from a different realm than
the default realm:

[realms]
DEFAULT.REALM = {

Allow access to principals from OTHER.REALM.
#
[1:$1@$0] matches single-component principal names and creates
a selection string containing the principal name and realm.
#
(.*@OTHER\.REALM) matches against the selection string, so that
only principals in OTHER.REALM are matched.
#
s/@OTHER\.REALM$// removes the realm name, leaving behind the
principal name as the account name.
auth_to_local = RULE:[1:$1@$0](.*@OTHER\.REALM)s/@OTHER\.REALM$//

Also allow principals from the default realm. Omit this line
to only allow access to principals in OTHER.REALM.
auth_to_local = DEFAULT

}

The auth_to_local_names subsection of the [realms] section for the default realm can specify explicit mappings from
principal names to local accounts. The key used in this subsection is the principal name without realm, so it is only
safe to use in a Kerberos environment with a single realm or a tightly controlled set of realms. An example use of
auth_to_local_names might be:

[realms]
ATHENA.MIT.EDU = {

auth_to_local_names = {
Careful, these match principals in any realm!
host/example.com = hostaccount
fred = localfred

}
}

Local authorization behavior can also be modified using plugin modules; see hostrealm_plugin for details.

76 Chapter 9. Host configuration

Kerberos Administration Guide, Release 1.22.1

9.3 Plugin module configuration

Many aspects of Kerberos behavior, such as client preauthentication and KDC service location, can be modified through
the use of plugin modules. For most of these behaviors, you can use the [plugins] section of krb5.conf to register third-
party modules, and to switch off registered or built-in modules.

A plugin module takes the form of a Unix shared object (modname.so) or Windows DLL (modname.dll). If you have
installed a third-party plugin module and want to register it, you do so using the module relation in the appropriate
subsection of the [plugins] section. The value for module must give the module name and the path to the module,
separated by a colon. The module name will often be the same as the shared object’s name, but in unusual cases (such
as a shared object which implements multiple modules for the same interface) it might not be. For example, to register
a client preauthentication module named mypreauth installed at /path/to/mypreauth.so, you could write:

[plugins]
clpreauth = {

module = mypreauth:/path/to/mypreauth.so
}

Many of the pluggable behaviors in MIT krb5 contain built-in modules which can be switched off. You can disable a
built-in module (or one you have registered) using the disable directive in the appropriate subsection of the [plugins]
section. For example, to disable the use of .k5identity files to select credential caches, you could write:

[plugins]
ccselect = {

disable = k5identity
}

If you want to disable multiple modules, specify the disable directive multiple times, giving one module to disable
each time.

Alternatively, you can explicitly specify which modules you want to be enabled for that behavior using the enable_only
directive. For example, to make kadmind check password quality using only a module you have registered, and no other
mechanism, you could write:

[plugins]
pwqual = {

module = mymodule:/path/to/mymodule.so
enable_only = mymodule

}

Again, if you want to specify multiple modules, specify the enable_only directive multiple times, giving one module
to enable each time.

Some Kerberos interfaces use different mechanisms to register plugin modules.

9.3. Plugin module configuration 77

Kerberos Administration Guide, Release 1.22.1

9.3.1 KDC location modules

For historical reasons, modules to control how KDC servers are located are registered simply by placing the shared
object or DLL into the “libkrb5” subdirectory of the krb5 plugin directory, which defaults to LIBDIR/krb5/plugins.
For example, Samba’s winbind krb5 locator plugin would be registered by placing its shared object in LIBDIR/krb5/
plugins/libkrb5/winbind_krb5_locator.so.

9.3.2 GSSAPI mechanism modules

GSSAPI mechanism modules are registered using the file SYSCONFDIR/gss/mech or configuration files in the
SYSCONFDIR/gss/mech.d directory with a .conf suffix. Each line in these files has the form:

name oid pathname [options] <type>

Only the name, oid, and pathname are required. name is the mechanism name, which may be used for debugging or
logging purposes. oid is the object identifier of the GSSAPI mechanism to be registered. pathname is a path to the
module shared object or DLL. options (if present) are options provided to the plugin module, surrounded in square
brackets. type (if present) can be used to indicate a special type of module. Currently the only special module type is
“interposer”, for a module designed to intercept calls to other mechanisms.

If the environment variable GSS_MECH_CONFIG is set, its value is used as the sole mechanism configuration file-
name.

9.3.3 Configuration profile modules

A configuration profile module replaces the information source for krb5.conf itself. To use a profile module, begin
krb5.conf with the line:

module PATHNAME:STRING

where PATHNAME is a path to the module shared object or DLL, and STRING is a string to provide to the module.
The module will then take over, and the rest of krb5.conf will be ignored.

78 Chapter 9. Host configuration

CHAPTER

TEN

BACKUPS OF SECURE HOSTS

When you back up a secure host, you should exclude the host’s keytab file from the backup. If someone obtained a copy
of the keytab from a backup, that person could make any host masquerade as the host whose keytab was compromised.
In many configurations, knowledge of the host’s keytab also allows root access to the host. This could be particularly
dangerous if the compromised keytab was from one of your KDCs. If the machine has a disk crash and the keytab
file is lost, it is easy to generate another keytab file. (See Adding principals to keytabs.) If you are unable to exclude
particular files from backups, you should ensure that the backups are kept as secure as the host’s root password.

10.1 Backing up the Kerberos database

As with any file, it is possible that your Kerberos database could become corrupted. If this happens on one of the
replica KDCs, you might never notice, since the next automatic propagation of the database would install a fresh copy.
However, if it happens to the primary KDC, the corrupted database would be propagated to all of the replicas during the
next propagation. For this reason, MIT recommends that you back up your Kerberos database regularly. Because the
primary KDC is continuously dumping the database to a file in order to propagate it to the replica KDCs, it is a simple
matter to have a cron job periodically copy the dump file to a secure machine elsewhere on your network. (Of course,
it is important to make the host where these backups are stored as secure as your KDCs, and to encrypt its transmission
across your network.) Then if your database becomes corrupted, you can load the most recent dump onto the primary
KDC. (See Dumping and loading a Kerberos database.)

79

Kerberos Administration Guide, Release 1.22.1

80 Chapter 10. Backups of secure hosts

CHAPTER

ELEVEN

PKINIT CONFIGURATION

PKINIT is a preauthentication mechanism for Kerberos 5 which uses X.509 certificates to authenticate the KDC to
clients and vice versa. PKINIT can also be used to enable anonymity support, allowing clients to communicate securely
with the KDC or with application servers without authenticating as a particular client principal.

11.1 Creating certificates

PKINIT requires an X.509 certificate for the KDC and one for each client principal which will authenticate using
PKINIT. For anonymous PKINIT, a KDC certificate is required, but client certificates are not. A commercially issued
server certificate can be used for the KDC certificate, but generally cannot be used for client certificates.

The instruction in this section describe how to establish a certificate authority and create standard PKINIT certificates.
Skip this section if you are using a commercially issued server certificate as the KDC certificate for anonymous PKINIT,
or if you are configuring a client to use an Active Directory KDC.

11.1.1 Generating a certificate authority certificate

You can establish a new certificate authority (CA) for use with a PKINIT deployment with the commands:

openssl genrsa -out cakey.pem 2048
openssl req -key cakey.pem -new -x509 -out cacert.pem -days 3650

The second command will ask for the values of several certificate fields. These fields can be set to any values. You can
adjust the expiration time of the CA certificate by changing the number after -days. Since the CA certificate must be
deployed to client machines each time it changes, it should normally have an expiration time far in the future; however,
expiration times after 2037 may cause interoperability issues in rare circumstances.

The result of these commands will be two files, cakey.pem and cacert.pem. cakey.pem will contain a 2048-bit RSA
private key, which must be carefully protected. cacert.pem will contain the CA certificate, which must be placed in the
filesystems of the KDC and each client host. cakey.pem will be required to create KDC and client certificates.

81

Kerberos Administration Guide, Release 1.22.1

11.1.2 Generating a KDC certificate

A KDC certificate for use with PKINIT is required to have some unusual fields, which makes generating them with
OpenSSL somewhat complicated. First, you will need a file containing the following:

[kdc_cert]
basicConstraints=CA:FALSE
keyUsage=nonRepudiation,digitalSignature,keyEncipherment,keyAgreement
extendedKeyUsage=1.3.6.1.5.2.3.5
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer
issuerAltName=issuer:copy
subjectAltName=otherName:1.3.6.1.5.2.2;SEQUENCE:kdc_princ_name

[kdc_princ_name]
realm=EXP:0,GeneralString:${ENV::REALM}
principal_name=EXP:1,SEQUENCE:kdc_principal_seq

[kdc_principal_seq]
name_type=EXP:0,INTEGER:2
name_string=EXP:1,SEQUENCE:kdc_principals

[kdc_principals]
princ1=GeneralString:krbtgt
princ2=GeneralString:${ENV::REALM}

If the above contents are placed in extensions.kdc, you can generate and sign a KDC certificate with the following
commands:

openssl genrsa -out kdckey.pem 2048
openssl req -new -out kdc.req -key kdckey.pem
env REALM=YOUR_REALMNAME openssl x509 -req -in kdc.req \

-CAkey cakey.pem -CA cacert.pem -out kdc.pem -days 365 \
-extfile extensions.kdc -extensions kdc_cert -CAcreateserial

rm kdc.req

The second command will ask for the values of certificate fields, which can be set to any values. In the third command,
substitute your KDC’s realm name for YOUR_REALMNAME. You can adjust the certificate’s expiration date by
changing the number after -days. Remember to create a new KDC certificate before the old one expires.

The result of this operation will be in two files, kdckey.pem and kdc.pem. Both files must be placed in the KDC’s
filesystem. kdckey.pem, which contains the KDC’s private key, must be carefully protected.

If you examine the KDC certificate with openssl x509 -in kdc.pem -text -noout, OpenSSL will not know
how to display the KDC principal name in the Subject Alternative Name extension, so it will appear as
othername:<unsupported>. This is normal and does not mean anything is wrong with the KDC certificate.

82 Chapter 11. PKINIT configuration

Kerberos Administration Guide, Release 1.22.1

11.1.3 Generating client certificates

PKINIT client certificates also must have some unusual certificate fields. To generate a client certificate with OpenSSL
for a single-component principal name, you will need an extensions file (different from the KDC extensions file above)
containing:

[client_cert]
basicConstraints=CA:FALSE
keyUsage=digitalSignature,keyEncipherment,keyAgreement
extendedKeyUsage=1.3.6.1.5.2.3.4
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer
issuerAltName=issuer:copy
subjectAltName=otherName:1.3.6.1.5.2.2;SEQUENCE:princ_name

[princ_name]
realm=EXP:0,GeneralString:${ENV::REALM}
principal_name=EXP:1,SEQUENCE:principal_seq

[principal_seq]
name_type=EXP:0,INTEGER:1
name_string=EXP:1,SEQUENCE:principals

[principals]
princ1=GeneralString:${ENV::CLIENT}

If the above contents are placed in extensions.client, you can generate and sign a client certificate with the following
commands:

openssl genrsa -out clientkey.pem 2048
openssl req -new -key clientkey.pem -out client.req
env REALM=YOUR_REALMNAME CLIENT=YOUR_PRINCNAME openssl x509 \

-CAkey cakey.pem -CA cacert.pem -req -in client.req \
-extensions client_cert -extfile extensions.client \
-days 365 -out client.pem

rm client.req

Normally, the first two commands should be run on the client host, and the resulting client.req file transferred to
the certificate authority host for the third command. As in the previous steps, the second command will ask for the
values of certificate fields, which can be set to any values. In the third command, substitute your realm’s name for
YOUR_REALMNAME and the client’s principal name (without realm) for YOUR_PRINCNAME. You can adjust the
certificate’s expiration date by changing the number after -days.

The result of this operation will be two files, clientkey.pem and client.pem. Both files must be present on the client’s
host; clientkey.pem, which contains the client’s private key, must be protected from access by others.

As in the KDC certificate, OpenSSL will display the client principal name as othername:<unsupported> in the
Subject Alternative Name extension of a PKINIT client certificate.

If the client principal name contains more than one component (e.g. host/example.com@REALM), the [principals]
section of extensions.client must be altered to contain multiple entries. (Simply setting CLIENT to host/
example.com would generate a certificate for host\/example.com@REALM which would not match the multi-
component principal name.) For a two-component principal, the section should read:

11.1. Creating certificates 83

Kerberos Administration Guide, Release 1.22.1

[principals]
princ1=GeneralString:${ENV::CLIENT1}
princ2=GeneralString:${ENV::CLIENT2}

The environment variables CLIENT1 and CLIENT2 must then be set to the first and second components when running
openssl x509.

11.2 Configuring the KDC

The KDC must have filesystem access to the KDC certificate (kdc.pem) and the KDC private key (kdckey.pem). Con-
figure the following relation in the KDC’s kdc.conf file, either in the [kdcdefaults] section or in a [realms] subsection
(with appropriate pathnames):

pkinit_identity = FILE:/var/lib/krb5kdc/kdc.pem,/var/lib/krb5kdc/kdckey.pem

If any clients will authenticate using regular (as opposed to anonymous) PKINIT, the KDC must also have filesystem
access to the CA certificate (cacert.pem), and the following configuration (with the appropriate pathname):

pkinit_anchors = FILE:/var/lib/krb5kdc/cacert.pem

Because of the larger size of requests and responses using PKINIT, you may also need to allow TCP access to the KDC:

kdc_tcp_listen = 88

Restart the krb5kdc daemon to pick up the configuration changes.

The principal entry for each PKINIT-using client must be configured to require preauthentication. Ensure this with the
command:

kadmin -q 'modprinc +requires_preauth YOUR_PRINCNAME'

Starting with release 1.12, it is possible to remove the long-term keys of a principal entry, which can save some space
in the database and help to clarify some PKINIT-related error conditions by not asking for a password:

kadmin -q 'purgekeys -all YOUR_PRINCNAME'

These principal options can also be specified at principal creation time as follows:

kadmin -q 'add_principal +requires_preauth -nokey YOUR_PRINCNAME'

By default, the KDC requires PKINIT client certificates to have the standard Extended Key Usage and Subject Alter-
native Name attributes for PKINIT. Starting in release 1.16, it is possible to authorize client certificates based on the
subject or other criteria instead of the standard PKINIT Subject Alternative Name, by setting the pkinit_cert_match
string attribute on each client principal entry. For example:

kadmin set_string user@REALM pkinit_cert_match "<SUBJECT>CN=user@REALM$"

The pkinit_cert_match string attribute follows the syntax used by the krb5.conf pkinit_cert_match relation. To
allow the use of non-PKINIT client certificates, it will also be necessary to disable key usage checking using the
pkinit_eku_checking relation; for example:

[kdcdefaults]
pkinit_eku_checking = none

84 Chapter 11. PKINIT configuration

Kerberos Administration Guide, Release 1.22.1

11.3 Configuring the clients

Client hosts must be configured to trust the issuing authority for the KDC certificate. For a newly established certificate
authority, the client host must have filesystem access to the CA certificate (cacert.pem) and the following relation in
krb5.conf in the appropriate [realms] subsection (with appropriate pathnames):

pkinit_anchors = FILE:/etc/krb5/cacert.pem

If the KDC certificate is a commercially issued server certificate, the issuing certificate is most likely included in a
system directory. You can specify it by filename as above, or specify the whole directory like so:

pkinit_anchors = DIR:/etc/ssl/certs

A commercially issued server certificate will usually not have the standard PKINIT principal name or Extended Key
Usage extensions, so the following additional configuration is required:

pkinit_eku_checking = kpServerAuth
pkinit_kdc_hostname = hostname.of.kdc.certificate

Multiple pkinit_kdc_hostname relations can be configured to recognize multiple KDC certificates. If the KDC is an
Active Directory domain controller, setting pkinit_kdc_hostname is necessary, but it should not be necessary to set
pkinit_eku_checking.

To perform regular (as opposed to anonymous) PKINIT authentication, a client host must have filesystem access to a
client certificate (client.pem), and the corresponding private key (clientkey.pem). Configure the following relations in
the client host’s krb5.conf file in the appropriate [realms] subsection (with appropriate pathnames):

pkinit_identities = FILE:/etc/krb5/client.pem,/etc/krb5/clientkey.pem

If the KDC and client are properly configured, it should now be possible to run kinit username without entering a
password.

11.4 Anonymous PKINIT

Anonymity support in Kerberos allows a client to obtain a ticket without authenticating as any particular principal.
Such a ticket can be used as a FAST armor ticket, or to securely communicate with an application server anonymously.

To configure anonymity support, you must generate or otherwise procure a KDC certificate and configure the KDC
host, but you do not need to generate any client certificates. On the KDC, you must set the pkinit_identity variable to
provide the KDC certificate, but do not need to set the pkinit_anchors variable or store the issuing certificate if you
won’t have any client certificates to verify. On client hosts, you must set the pkinit_anchors variable (and possibly
pkinit_kdc_hostname and pkinit_eku_checking) in order to trust the issuing authority for the KDC certificate, but
do not need to set the pkinit_identities variable.

Anonymity support is not enabled by default. To enable it, you must create the principal WELLKNOWN/ANONYMOUS using
the command:

kadmin -q 'addprinc -randkey WELLKNOWN/ANONYMOUS'

Some Kerberos deployments include application servers which lack proper access control, and grant some level of
access to any user who can authenticate. In such an environment, enabling anonymity support on the KDC would
present a security issue. If you need to enable anonymity support for TGTs (for use as FAST armor tickets) without
enabling anonymous authentication to application servers, you can set the variable restrict_anonymous_to_tgt to
true in the appropriate [realms] subsection of the KDC’s kdc.conf file.

11.3. Configuring the clients 85

Kerberos Administration Guide, Release 1.22.1

To obtain anonymous credentials on a client, run kinit -n, or kinit -n @REALMNAME to specify a realm. The
resulting tickets will have the client name WELLKNOWN/ANONYMOUS@WELLKNOWN:ANONYMOUS.

11.5 Freshness tokens

Freshness tokens can ensure that the client has recently had access to its certificate private key. If freshness tokens
are not required by the KDC, a client program with temporary possession of the private key can compose requests for
future timestamps and use them later.

In release 1.17 and later, freshness tokens are supported by the client and are sent by the KDC when the client indicates
support for them. Because not all clients support freshness tokens yet, they are not required by default. To check if
freshness tokens are supported by a realm’s clients, look in the KDC logs for the lines:

PKINIT: freshness token received from <client principal>
PKINIT: no freshness token received from <client principal>

To require freshness tokens for all clients in a realm (except for clients authenticating anonymously), set the
pkinit_require_freshness variable to true in the appropriate [realms] subsection of the KDC’s kdc.conf file. To
test that this option is in effect, run kinit -X disable_freshness and verify that authentication is unsuccessful.

86 Chapter 11. PKINIT configuration

CHAPTER

TWELVE

OTP PREAUTHENTICATION

OTP is a preauthentication mechanism for Kerberos 5 which uses One Time Passwords (OTP) to authenticate the client
to the KDC. The OTP is passed to the KDC over an encrypted FAST channel in clear-text. The KDC uses the password
along with per-user configuration to proxy the request to a third-party RADIUS system. This enables out-of-the-box
compatibility with a large number of already widely deployed proprietary systems.

Additionally, our implementation of the OTP system allows for the passing of RADIUS requests over a UNIX domain
stream socket. This permits the use of a local companion daemon which can handle the details of authentication.

12.1 Defining token types

Token types are defined in either krb5.conf or kdc.conf according to the following format:

[otp]
<name> = {

server = <host:port or filename> (default: see below)
secret = <filename>
timeout = <integer> (default: 5 [seconds])
retries = <integer> (default: 3)
strip_realm = <boolean> (default: true)
indicator = <string> (default: none)

}

If the server field begins with ‘/’, it will be interpreted as a UNIX socket. Otherwise, it is assumed to be in the format
host:port. When a UNIX domain socket is specified, the secret field is optional and an empty secret is used by default.
If the server field is not specified, it defaults to RUNSTATEDIR/krb5kdc/<name>.socket.

When forwarding the request over RADIUS, by default the principal is used in the User-Name attribute of the RADIUS
packet. The strip_realm parameter controls whether the principal is forwarded with or without the realm portion.

If an indicator field is present, tickets issued using this token type will be annotated with the specified authentication
indicator (see Authentication indicators). This key may be specified multiple times to add multiple indicators.

87

Kerberos Administration Guide, Release 1.22.1

12.2 The default token type

A default token type is used internally when no token type is specified for a given user. It is defined as follows:

[otp]
DEFAULT = {

strip_realm = false
}

The administrator may override the internal DEFAULT token type simply by defining a configuration with the same
name.

12.3 Token instance configuration

To enable OTP for a client principal, the administrator must define the otp string attribute for that principal. (See
set_string.) The otp user string is a JSON string of the format:

[{
"type": <string>,
"username": <string>,
"indicators": [<string>, ...]

}, ...]

This is an array of token objects. Both fields of token objects are optional. The type field names the token type of
this token; if not specified, it defaults to DEFAULT. The username field specifies the value to be sent in the User-Name
RADIUS attribute. If not specified, the principal name is sent, with or without realm as defined in the token type. The
indicators field specifies a list of authentication indicators to annotate tickets with, overriding any indicators specified
in the token type.

For ease of configuration, an empty array ([]) is treated as equivalent to one DEFAULT token ([{}]).

12.4 Other considerations

1. FAST is required for OTP to work.

88 Chapter 12. OTP Preauthentication

CHAPTER

THIRTEEN

SPAKE PREAUTHENTICATION

SPAKE preauthentication (added in release 1.17) uses public key cryptography techniques to protect against password
dictionary attacks. Unlike PKINIT , it does not require any additional infrastructure such as certificates; it simply needs
to be turned on. Using SPAKE preauthentication may modestly increase the CPU and network load on the KDC.

SPAKE preauthentication can use one of four elliptic curve groups for its password-authenticated key exchange. The
recommended group is edwards25519; three NIST curves (P-256, P-384, and P-521) are also supported.

By default, SPAKE with the edwards25519 group is enabled on clients, but the KDC does not offer SPAKE by default.
To turn it on, set the spake_preauth_groups variable in [libdefaults] to a list of allowed groups. This variable affects
both the client and the KDC. Simply setting it to edwards25519 is recommended:

[libdefaults]
spake_preauth_groups = edwards25519

Set the +requires_preauth and -allow_svr flags on client principal entries, as you would for any preauthentication
mechanism:

kadmin: modprinc +requires_preauth -allow_svr PRINCNAME

Clients which do not implement SPAKE preauthentication will fall back to encrypted timestamp.

An active attacker can force a fallback to encrypted timestamp by modifying the initial KDC response, defeating the
protection against dictionary attacks. To prevent this fallback on clients which do implement SPAKE preauthentica-
tion, set the disable_encrypted_timestamp variable to true in the [realms] subsection for realms whose KDCs offer
SPAKE preauthentication.

By default, SPAKE preauthentication requires an extra network round trip to the KDC during initial authentication. If
most of the clients in a realm support SPAKE, this extra round trip can be eliminated using an optimistic challenge, by
setting the spake_preauth_kdc_challenge variable in [kdcdefaults] to a single group name:

[kdcdefaults]
spake_preauth_kdc_challenge = edwards25519

Using optimistic challenge will cause the KDC to do extra work for initial authentication requests that do not result in
SPAKE preauthentication, but will save work when SPAKE preauthentication is used.

89

Kerberos Administration Guide, Release 1.22.1

90 Chapter 13. SPAKE Preauthentication

CHAPTER

FOURTEEN

ADDRESSING DICTIONARY ATTACK RISKS

Kerberos initial authentication is normally secured using the client principal’s long-term key, which for users is gen-
erally derived from a password. Using a pasword-derived long-term key carries the risk of a dictionary attack, where
an attacker tries a sequence of possible passwords, possibly requiring much less effort than would be required to try
all possible values of the key. Even if password policy objects are used to force users not to pick trivial passwords,
dictionary attacks can sometimes be successful against a significant fraction of the users in a realm. Dictionary attacks
are not a concern for principals using random keys.

A dictionary attack may be online or offline. An online dictionary attack is performed by trying each password in a
separate request to the KDC, and is therefore visible to the KDC and also limited in speed by the KDC’s processing
power and the network capacity between the client and the KDC. Online dictionary attacks can be mitigated using
account lockout. This measure is not totally satisfactory, as it makes it easy for an attacker to deny access to a client
principal.

An offline dictionary attack is performed by obtaining a ciphertext generated using the password-derived key, and trying
each password against the ciphertext. This category of attack is invisible to the KDC and can be performed much faster
than an online attack. The attack will generally take much longer with more recent encryption types (particularly the
ones based on AES), because those encryption types use a much more expensive string-to-key function. However,
the best defense is to deny the attacker access to a useful ciphertext. The required defensive measures depend on the
attacker’s level of network access.

An off-path attacker has no access to packets sent between legitimate users and the KDC. An off-path attacker could
gain access to an attackable ciphertext either by making an AS request for a client principal which does not have the
+requires_preauth flag, or by making a TGS request (after authenticating as a different user) for a server principal
which does not have the -allow_svr flag. To address off-path attackers, a KDC administrator should set those flags on
principals with password-derived keys:

kadmin: add_principal +requires_preauth -allow_svr princname

An attacker with passive network access (one who can monitor packets sent between legitimate users and the KDC, but
cannot change them or insert their own packets) can gain access to an attackable ciphertext by observing an authentica-
tion by a user using the most common form of preauthentication, encrypted timestamp. Any of the following methods
can prevent dictionary attacks by attackers with passive network access:

• Enabling SPAKE preauthentication (added in release 1.17) on the KDC, and ensuring that all clients are able to
support it.

• Using an HTTPS proxy for communication with the KDC, if the attacker cannot monitor communication between
the proxy server and the KDC.

• Using FAST, protecting the initial authentication with either a random key (such as a host key) or with anonymous
PKINIT .

An attacker with active network access (one who can inject or modify packets sent between legitimate users and the
KDC) can try to fool the client software into sending an attackable ciphertext using an encryption type and salt string
of the attacker’s choosing. Any of the following methods can prevent dictionary attacks by active attackers:

91

Kerberos Administration Guide, Release 1.22.1

• Enabling SPAKE preauthentication and setting the disable_encrypted_timestamp variable to true in the
[realms] subsection of the client configuration.

• Using an HTTPS proxy as described above, configured in the client’s krb5.conf realm configuration. If KDC
discovery is used to locate a proxy server, an active attacker may be able to use DNS spoofing to cause the client
to use a different HTTPS server or to not use HTTPS.

• Using FAST as described above.

If PKINIT or OTP are used for initial authentication, the principal’s long-term keys are not used and dictionary attacks
are usually not a concern.

92 Chapter 14. Addressing dictionary attack risks

CHAPTER

FIFTEEN

PRINCIPAL NAMES AND DNS

Kerberos clients can do DNS lookups to canonicalize service principal names. This can cause difficulties when setting
up Kerberos application servers, especially when the client’s name for the service is different from what the service
thinks its name is.

15.1 Service principal names

A frequently used kind of principal name is the host-based service principal name. This kind of principal name has two
components: a service name and a hostname. For example, imap/imap.example.com is the principal name of the
“imap” service on the host “imap.example.com”. Other possible service names for the first component include “host”
(remote login services such as ssh), “HTTP”, and “nfs” (Network File System).

Service administrators often publish well-known hostname aliases that they would prefer users to use instead of the
canonical name of the service host. This gives service administrators more flexibility in deploying services. For
example, a shell login server might be named “long-vanity-hostname.example.com”, but users will naturally prefer to
type something like “login.example.com”. Hostname aliases also allow for administrators to set up load balancing for
some sorts of services based on rotating CNAME records in DNS.

15.2 Service principal canonicalization

In the MIT krb5 client library, canonicalization of host-based service principals is controlled by the
dns_canonicalize_hostname, rnds, and qualify_shortname variables in [libdefaults].

If dns_canonicalize_hostname is set to true (the default value), the client performs forward resolution by looking
up the IPv4 and/or IPv6 addresses of the hostname using getaddrinfo(). This process will typically add a domain
suffix to the hostname if needed, and follow CNAME records in the DNS. If rdns is also set to true (the default), the
client will then perform a reverse lookup of the first returned Internet address using getnameinfo(), finding the name
associated with the PTR record.

If dns_canonicalize_hostname is set to false, the hostname is not canonicalized using DNS. If the hostname has
only one component (i.e. it contains no “.” characters), the host’s primary DNS search domain will be appended, if
there is one. The qualify_shortname variable can be used to override or disable this suffix.

If dns_canonicalize_hostname is set to fallback (added in release 1.18), the hostname is initially treated according to
the rules for dns_canonicalize_hostname=false. If a ticket request fails because the service principal is unknown,
the hostname will be canonicalized according to the rules for dns_canonicalize_hostname=true and the request
will be retried.

In all cases, the hostname is converted to lowercase, and any trailing dot is removed.

93

Kerberos Administration Guide, Release 1.22.1

15.3 Reverse DNS mismatches

Sometimes, an enterprise will have control over its forward DNS but not its reverse DNS. The reverse DNS is sometimes
under the control of the Internet service provider of the enterprise, and the enterprise may not have much influence in
setting up reverse DNS records for its address space. If there are difficulties with getting forward and reverse DNS to
match, it is best to set rdns = false on client machines.

15.4 Overriding application behavior

Applications can choose to use a default hostname component in their service principal name when accepting authen-
tication, which avoids some sorts of hostname mismatches. Because not all relevant applications do this yet, using the
krb5.conf setting:

[libdefaults]
ignore_acceptor_hostname = true

will allow the Kerberos library to override the application’s choice of service principal hostname and will allow a server
program to accept incoming authentications using any key in its keytab that matches the service name and realm name
(if given). This setting defaults to “false” and is available in releases krb5-1.10 and later.

15.5 Provisioning keytabs

One service principal entry that should be in the keytab is a principal whose hostname component is the canonical
hostname that getaddrinfo() reports for all known aliases for the host. If the reverse DNS information does not
match this canonical hostname, an additional service principal entry should be in the keytab for this different hostname.

15.6 Specific application advice

15.6.1 Secure shell (ssh)

Setting GSSAPIStrictAcceptorCheck = no in the configuration file of modern versions of the openssh daemon will
allow the daemon to try any key in its keytab when accepting a connection, rather than looking for the keytab entry that
matches the host’s own idea of its name (typically the name that gethostname() returns). This requires krb5-1.10 or
later.

15.6.2 OpenLDAP (ldapsearch, etc.)

OpenLDAP’s SASL implementation performs reverse DNS lookup in order to canonicalize service principal names,
even if rdns is set to false in the Kerberos configuration. To disable this behavior, add SASL_NOCANON on to ldap.
conf, or set the LDAPSASL_NOCANON environment variable.

94 Chapter 15. Principal names and DNS

CHAPTER

SIXTEEN

ENCRYPTION TYPES

Kerberos can use a variety of cipher algorithms to protect data. A Kerberos encryption type (also known as an enctype)
is a specific combination of a cipher algorithm with an integrity algorithm to provide both confidentiality and integrity
to data.

16.1 Enctypes in requests

Clients make two types of requests (KDC-REQ) to the KDC: AS-REQs and TGS-REQs. The client uses the AS-REQ
to obtain initial tickets (typically a Ticket-Granting Ticket (TGT)), and uses the TGS-REQ to obtain service tickets.

The KDC uses three different keys when issuing a ticket to a client:

• The long-term key of the service: the KDC uses this to encrypt the actual service ticket. The KDC only uses the
first long-term key in the most recent kvno for this purpose.

• The session key: the KDC randomly chooses this key and places one copy inside the ticket and the other copy
inside the encrypted part of the reply.

• The reply-encrypting key: the KDC uses this to encrypt the reply it sends to the client. For AS replies, this is a
long-term key of the client principal. For TGS replies, this is either the session key of the authenticating ticket,
or a subsession key.

Each of these keys is of a specific enctype.

Each request type allows the client to submit a list of enctypes that it is willing to accept. For the AS-REQ, this list
affects both the session key selection and the reply-encrypting key selection. For the TGS-REQ, this list only affects
the session key selection.

16.2 Session key selection

The KDC chooses the session key enctype by taking the intersection of its permitted_enctypes list, the list of long-
term keys for the most recent kvno of the service, and the client’s requested list of enctypes. Starting in krb5-1.21, all
services are assumed to support aes256-cts-hmac-sha1-96; also, des3-cbc-sha1 and arcfour-hmac session keys will not
be issued by default.

Starting in krb5-1.11, it is possible to set a string attribute on a service principal to control what session key enctypes
the KDC may issue for service tickets for that principal, overriding the service’s long-term keys and the assumption of
aes256-cts-hmac-sha1-96 support. See set_string in kadmin for details.

95

Kerberos Administration Guide, Release 1.22.1

16.3 Choosing enctypes for a service

Generally, a service should have a key of the strongest enctype that both it and the KDC support. If the KDC is running
a release earlier than krb5-1.11, it is also useful to generate an additional key for each enctype that the service can
support. The KDC will only use the first key in the list of long-term keys for encrypting the service ticket, but the
additional long-term keys indicate the other enctypes that the service supports.

As noted above, starting with release krb5-1.11, there are additional configuration settings that control session key
enctype selection independently of the set of long-term keys that the KDC has stored for a service principal.

16.4 Configuration variables

The following [libdefaults] settings in krb5.conf will affect how enctypes are chosen.

allow_weak_crypto
defaults to false starting with krb5-1.8. When false, removes weak enctypes from permitted_enctypes, de-
fault_tkt_enctypes, and default_tgs_enctypes. Do not set this to true unless the use of weak enctypes is an
acceptable risk for your environment and the weak enctypes are required for backward compatibility.

allow_des3
was added in release 1.21 and defaults to false. Unless this flag is set to true, the KDC will not issue tickets
with des3-cbc-sha1 session keys. In a future release, this flag will control whether des3-cbc-sha1 is permitted in
similar fashion to weak enctypes.

allow_rc4
was added in release 1.21 and defaults to false. Unless this flag is set to true, the KDC will not issue tickets with
arcfour-hmac session keys. In a future release, this flag will control whether arcfour-hmac is permitted in similar
fashion to weak enctypes.

permitted_enctypes
controls the set of enctypes that a service will permit for session keys and for ticket and authenticator encryption.
The KDC and other programs that access the Kerberos database will ignore keys of non-permitted enctypes.
Starting in release 1.18, this setting also acts as the default for default_tkt_enctypes and default_tgs_enctypes.

default_tkt_enctypes
controls the default set of enctypes that the Kerberos client library requests when making an AS-REQ. Do not set
this unless required for specific backward compatibility purposes; stale values of this setting can prevent clients
from taking advantage of new stronger enctypes when the libraries are upgraded.

default_tgs_enctypes
controls the default set of enctypes that the Kerberos client library requests when making a TGS-REQ. Do not set
this unless required for specific backward compatibility purposes; stale values of this setting can prevent clients
from taking advantage of new stronger enctypes when the libraries are upgraded.

The following per-realm setting in kdc.conf affects the generation of long-term keys.

supported_enctypes
controls the default set of enctype-salttype pairs that kadmind will use for generating long-term keys, either
randomly or from passwords

96 Chapter 16. Encryption types

Kerberos Administration Guide, Release 1.22.1

16.5 Enctype compatibility

See Encryption types for additional information about enctypes.

enctype weak? krb5 Windows
des-cbc-crc weak <1.18 >=2000
des-cbc-md4 weak <1.18 ?
des-cbc-md5 weak <1.18 >=2000
des3-cbc-sha1 deprecated >=1.1 none
arcfour-hmac deprecated >=1.3 >=2000
arcfour-hmac-exp weak >=1.3 >=2000
aes128-cts-hmac-sha1-96 >=1.3 >=Vista
aes256-cts-hmac-sha1-96 >=1.3 >=Vista
aes128-cts-hmac-sha256-128 >=1.15 none
aes256-cts-hmac-sha384-192 >=1.15 none
camellia128-cts-cmac >=1.9 none
camellia256-cts-cmac >=1.9 none

krb5 releases 1.18 and later do not support single-DES. krb5 releases 1.8 and later disable the single-DES enctypes by
default. Microsoft Windows releases Windows 7 and later disable single-DES enctypes by default.

krb5 releases 1.17 and later flag deprecated encryption types (including des3-cbc-sha1 and arcfour-hmac) in KDC
logs and kadmin output. krb5 release 1.19 issues a warning during initial authentication if des3-cbc-sha1 is used.
Future releases will disable des3-cbc-sha1 by default and eventually remove support for it.

16.6 Migrating away from older encryption types

Administrator intervention may be required to migrate a realm away from legacy encryption types, especially if the
realm was created using krb5 release 1.2 or earlier. This migration should be performed before upgrading to krb5
versions which disable or remove support for legacy encryption types.

If there is a supported_enctypes setting in kdc.conf on the KDC, make sure that it does not include weak or deprecated
encryption types. This will ensure that newly created keys do not use those encryption types by default.

Check the krbtgt/REALM principal using the kadmin getprinc command. If it lists a weak or deprecated encryption
type as the first key, it must be migrated using the procedure in Changing the krbtgt key.

Check the kadmin/history principal, which should have only one key entry. If it uses a weak or deprecated encryption
type, it should be upgraded following the notes in Updating the history key.

Check the other kadmin principals: kadmin/changepw, kadmin/admin, and any kadmin/hostname principals that may
exist. These principals can be upgraded with change_password -randkey in kadmin.

Check the K/M entry. If it uses a weak or deprecated encryption type, it should be upgraded following the procedure in
Updating the master key.

User and service principals using legacy encryption types can be enumerated with the kdb5_util tabdump keyinfo
command.

Service principals can be migrated with a keytab rotation on the service host, which can be accomplished using the
k5srvutil change and delold commands. Allow enough time for existing tickets to expire between the change and
delold operations.

User principals with password-based keys can be migrated with a password change. The realm administrator can set a
password expiration date using the kadmin modify_principal -pwexpire command to force a password change.

16.5. Enctype compatibility 97

Kerberos Administration Guide, Release 1.22.1

If a legacy encryption type has not yet been disabled by default in the version of krb5 running on the KDC, it can be dis-
abled administratively with the permitted_enctypes variable. For example, setting permitted_enctypes to DEFAULT
-des3 -rc4 will cause any database keys of the triple-DES and RC4 encryption types to be ignored.

98 Chapter 16. Encryption types

CHAPTER

SEVENTEEN

HTTPS PROXY CONFIGURATION

In addition to being able to use UDP or TCP to communicate directly with a KDC as is outlined in RFC4120, and with
kpasswd services in a similar fashion, the client libraries can attempt to use an HTTPS proxy server to communicate
with a KDC or kpasswd service, using the protocol outlined in [MS-KKDCP].

Communicating with a KDC through an HTTPS proxy allows clients to contact servers when network firewalls might
otherwise prevent them from doing so. The use of TLS also encrypts all traffic between the clients and the KDC,
preventing observers from conducting password dictionary attacks or from observing the client and server principals
being authenticated, at additional computational cost to both clients and servers.

An HTTPS proxy server is provided as a feature in some versions of Microsoft Windows Server, and a WSGI imple-
mentation named kdcproxy is available in the python package index.

17.1 Configuring the clients

To use an HTTPS proxy, a client host must trust the CA which issued that proxy’s SSL certificate. If that CA’s certificate
is not in the system-wide default set of trusted certificates, configure the following relation in the client host’s krb5.conf
file in the appropriate [realms] subsection:

http_anchors = FILE:/etc/krb5/cacert.pem

Adjust the pathname to match the path of the file which contains a copy of the CA’s certificate. The http_anchors option
is documented more fully in krb5.conf .

Configure the client to access the KDC and kpasswd service by specifying their locations in its krb5.conf file in the
form of HTTPS URLs for the proxy server:

kdc = https://server.fqdn/KdcProxy
kpasswd_server = https://server.fqdn/KdcProxy

If the proxy and client are properly configured, client commands such as kinit, kvno, and kpasswd should all function
normally.

99

Kerberos Administration Guide, Release 1.22.1

100 Chapter 17. HTTPS proxy configuration

CHAPTER

EIGHTEEN

AUTHENTICATION INDICATORS

As of release 1.14, the KDC can be configured to annotate tickets if the client authenticated using a stronger preau-
thentication mechanism such as PKINIT or OTP. These annotations are called “authentication indicators.” Service
principals can be configured to require particular authentication indicators in order to authenticate to that service. An
authentication indicator value can be any string chosen by the KDC administrator; there are no pre-set values.

To use authentication indicators with PKINIT or OTP, first configure the KDC to include an indicator when that preau-
thentication mechanism is used. For PKINIT, use the pkinit_indicator variable in kdc.conf . For OTP, use the indicator
variable in the token type definition, or specify the indicators in the otp user string as described in OTP Preauthenti-
cation.

To require an indicator to be present in order to authenticate to a service principal, set the require_auth string attribute
on the principal to the indicator value to be required. If you wish to allow one of several indicators to be accepted, you
can specify multiple indicator values separated by spaces.

For example, a realm could be configured to set the authentication indicator value “strong” when PKINIT is used to
authenticate, using a setting in the [realms] subsection:

pkinit_indicator = strong

A service principal could be configured to require the “strong” authentication indicator value:

$ kadmin setstr host/high.value.server require_auth strong
Password for user/admin@KRBTEST.COM:

A user who authenticates with PKINIT would be able to obtain a ticket for the service principal:

$ kinit -X X509_user_identity=FILE:/my/cert.pem,/my/key.pem user
$ kvno host/high.value.server
host/high.value.server@KRBTEST.COM: kvno = 1

but a user who authenticates with a password would not:

$ kinit user
Password for user@KRBTEST.COM:
$ kvno host/high.value.server
kvno: KDC policy rejects request while getting credentials for
host/high.value.server@KRBTEST.COM

GSSAPI server applications can inspect authentication indicators through the auth-indicators name attribute.

101

Kerberos Administration Guide, Release 1.22.1

102 Chapter 18. Authentication indicators

CHAPTER

NINETEEN

ADMINISTRATION PROGRAMS

19.1 kadmin

19.1.1 SYNOPSIS

kadmin [-O|-N] [-r realm] [-p principal] [-q query] [[-c cache_name]|[-k [-t keytab]]|-n] [-w password] [-s ad-
min_server[:port]] [command args. . .]

kadmin.local [-r realm] [-p principal] [-q query] [-d dbname] [-e enc:salt . . .] [-m] [-x db_args] [command args. . .]

19.1.2 DESCRIPTION

kadmin and kadmin.local are command-line interfaces to the Kerberos V5 administration system. They provide nearly
identical functionalities; the difference is that kadmin.local directly accesses the KDC database, while kadmin per-
forms operations using kadmind. Except as explicitly noted otherwise, this man page will use “kadmin” to refer to
both versions. kadmin provides for the maintenance of Kerberos principals, password policies, and service key tables
(keytabs).

The remote kadmin client uses Kerberos to authenticate to kadmind using the service principal kadmin/admin or
kadmin/ADMINHOST (where ADMINHOST is the fully-qualified hostname of the admin server). If the credentials
cache contains a ticket for one of these principals, and the -c credentials_cache option is specified, that ticket is used to
authenticate to kadmind. Otherwise, the -p and -k options are used to specify the client Kerberos principal name used
to authenticate. Once kadmin has determined the principal name, it requests a service ticket from the KDC, and uses
that service ticket to authenticate to kadmind.

Since kadmin.local directly accesses the KDC database, it usually must be run directly on the primary KDC with
sufficient permissions to read the KDC database. If the KDC database uses the LDAP database module, kadmin.local
can be run on any host which can access the LDAP server.

19.1.3 OPTIONS

-r realm
Use realm as the default database realm.

-p principal
Use principal to authenticate. Otherwise, kadmin will append /admin to the primary principal name of the
default ccache, the value of the USER environment variable, or the username as obtained with getpwuid, in
order of preference.

-k
Use a keytab to decrypt the KDC response instead of prompting for a password. In this case, the default principal
will be host/hostname. If there is no keytab specified with the -t option, then the default keytab will be used.

103

Kerberos Administration Guide, Release 1.22.1

-t keytab
Use keytab to decrypt the KDC response. This can only be used with the -k option.

-n
Requests anonymous processing. Two types of anonymous principals are supported. For fully anonymous Ker-
beros, configure PKINIT on the KDC and configure pkinit_anchors in the client’s krb5.conf . Then use the
-n option with a principal of the form @REALM (an empty principal name followed by the at-sign and a realm
name). If permitted by the KDC, an anonymous ticket will be returned. A second form of anonymous tickets is
supported; these realm-exposed tickets hide the identity of the client but not the client’s realm. For this mode,
use kinit -n with a normal principal name. If supported by the KDC, the principal (but not realm) will be
replaced by the anonymous principal. As of release 1.8, the MIT Kerberos KDC only supports fully anonymous
operation.

-c credentials_cache
Use credentials_cache as the credentials cache. The cache should contain a service ticket for the kadmin/admin
or kadmin/ADMINHOST (where ADMINHOST is the fully-qualified hostname of the admin server) service; it can
be acquired with the kinit(1) program. If this option is not specified, kadmin requests a new service ticket from
the KDC, and stores it in its own temporary ccache.

-w password
Use password instead of prompting for one. Use this option with care, as it may expose the password to other
users on the system via the process list.

-q query
Perform the specified query and then exit.

-d dbname
Specifies the name of the KDC database. This option does not apply to the LDAP database module.

-s admin_server[:port]
Specifies the admin server which kadmin should contact.

-m
If using kadmin.local, prompt for the database master password instead of reading it from a stash file.

-e “enc:salt . . . ”
Sets the keysalt list to be used for any new keys created. See Keysalt lists in kdc.conf for a list of possible values.

-O
Force use of old AUTH_GSSAPI authentication flavor.

-N
Prevent fallback to AUTH_GSSAPI authentication flavor.

-x db_args
Specifies the database specific arguments. See the next section for supported options.

Starting with release 1.14, if any command-line arguments remain after the options, they will be treated as a single
query to be executed. This mode of operation is intended for scripts and behaves differently from the interactive mode
in several respects:

• Query arguments are split by the shell, not by kadmin.

• Informational and warning messages are suppressed. Error messages and query output (e.g. for get_principal)
will still be displayed.

• Confirmation prompts are disabled (as if -force was given). Password prompts will still be issued as required.

• The exit status will be non-zero if the query fails.

The -q option does not carry these behavior differences; the query will be processed as if it was entered interactively.
The -q option cannot be used in combination with a query in the remaining arguments.

104 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

19.1.4 DATABASE OPTIONS

Database options can be used to override database-specific defaults. Supported options for the DB2 module are:

-x dbname=*filename*
Specifies the base filename of the DB2 database.

-x lockiter
Make iteration operations hold the lock for the duration of the entire operation, rather than temporarily
releasing the lock while handling each principal. This is the default behavior, but this option exists
to allow command line override of a [dbmodules] setting. First introduced in release 1.13.

-x unlockiter
Make iteration operations unlock the database for each principal, instead of holding the lock for the
duration of the entire operation. First introduced in release 1.13.

Supported options for the LDAP module are:

-x host=ldapuri
Specifies the LDAP server to connect to by a LDAP URI.

-x binddn=bind_dn
Specifies the DN used to bind to the LDAP server.

-x bindpwd=password
Specifies the password or SASL secret used to bind to the LDAP server. Using this option may expose
the password to other users on the system via the process list; to avoid this, instead stash the password
using the stashsrvpw command of kdb5_ldap_util.

-x sasl_mech=mechanism
Specifies the SASL mechanism used to bind to the LDAP server. The bind DN is ignored if a SASL
mechanism is used. New in release 1.13.

-x sasl_authcid=name
Specifies the authentication name used when binding to the LDAP server with a SASL mechanism,
if the mechanism requires one. New in release 1.13.

-x sasl_authzid=name
Specifies the authorization name used when binding to the LDAP server with a SASL mechanism.
New in release 1.13.

-x sasl_realm=realm
Specifies the realm used when binding to the LDAP server with a SASL mechanism, if the mechanism
uses one. New in release 1.13.

-x debug=level
sets the OpenLDAP client library debug level. level is an integer to be interpreted by the library.
Debugging messages are printed to standard error. New in release 1.12.

19.1.5 COMMANDS

When using the remote client, available commands may be restricted according to the privileges specified in the
kadm5.acl file on the admin server.

19.1. kadmin 105

Kerberos Administration Guide, Release 1.22.1

add_principal

add_principal [options] newprinc

Creates the principal newprinc, prompting twice for a password. If no password policy is specified with the -policy
option, and the policy named default is assigned to the principal if it exists. However, creating a policy named
default will not automatically assign this policy to previously existing principals. This policy assignment can be
suppressed with the -clearpolicy option.

This command requires the add privilege.

Aliases: addprinc, ank

Options:

-expire expdate
(getdate string) The expiration date of the principal.

-pwexpire pwexpdate
(getdate string) The password expiration date.

-maxlife maxlife
(duration or getdate string) The maximum ticket life for the principal.

-maxrenewlife maxrenewlife
(duration or getdate string) The maximum renewable life of tickets for the principal.

-kvno kvno
The initial key version number.

-policy policy
The password policy used by this principal. If not specified, the policy default is used if it exists (unless
-clearpolicy is specified).

-clearpolicy
Prevents any policy from being assigned when -policy is not specified.

{-|+}allow_postdated
-allow_postdated prohibits this principal from obtaining postdated tickets. +allow_postdated clears this flag.

{-|+}allow_forwardable
-allow_forwardable prohibits this principal from obtaining forwardable tickets. +allow_forwardable clears this
flag.

{-|+}allow_renewable
-allow_renewable prohibits this principal from obtaining renewable tickets. +allow_renewable clears this flag.

{-|+}allow_proxiable
-allow_proxiable prohibits this principal from obtaining proxiable tickets. +allow_proxiable clears this flag.

{-|+}allow_dup_skey
-allow_dup_skey disables user-to-user authentication for this principal by prohibiting others from obtaining a
service ticket encrypted in this principal’s TGT session key. +allow_dup_skey clears this flag.

{-|+}requires_preauth
+requires_preauth requires this principal to preauthenticate before being allowed to kinit. -requires_preauth
clears this flag. When +requires_preauth is set on a service principal, the KDC will only issue service tickets
for that service principal if the client’s initial authentication was performed using preauthentication.

{-|+}requires_hwauth
+requires_hwauth requires this principal to preauthenticate using a hardware device before being allowed to
kinit. -requires_hwauth clears this flag. When +requires_hwauth is set on a service principal, the KDC will

106 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

only issue service tickets for that service principal if the client’s initial authentication was performed using a
hardware device to preauthenticate.

{-|+}ok_as_delegate
+ok_as_delegate sets the okay as delegate flag on tickets issued with this principal as the service. Clients may
use this flag as a hint that credentials should be delegated when authenticating to the service. -ok_as_delegate
clears this flag.

{-|+}allow_svr
-allow_svr prohibits the issuance of service tickets for this principal. In release 1.17 and later, user-to-user
service tickets are still allowed unless the -allow_dup_skey flag is also set. +allow_svr clears this flag.

{-|+}allow_tgs_req
-allow_tgs_req specifies that a Ticket-Granting Service (TGS) request for a service ticket for this principal is
not permitted. +allow_tgs_req clears this flag.

{-|+}allow_tix
-allow_tix forbids the issuance of any tickets for this principal. +allow_tix clears this flag.

{-|+}needchange
+needchange forces a password change on the next initial authentication to this principal. -needchange clears
this flag.

{-|+}password_changing_service
+password_changing_service marks this principal as a password change service principal.

{-|+}ok_to_auth_as_delegate
+ok_to_auth_as_delegate allows this principal to acquire forwardable tickets to itself from arbitrary users, for
use with constrained delegation.

{-|+}no_auth_data_required
+no_auth_data_required prevents PAC or AD-SIGNEDPATH data from being added to service tickets for the
principal.

{-|+}lockdown_keys
+lockdown_keys prevents keys for this principal from leaving the KDC via kadmind. The chpass and extract
operations are denied for a principal with this attribute. The chrand operation is allowed, but will not return the
new keys. The delete and rename operations are also denied if this attribute is set, in order to prevent a malicious
administrator from replacing principals like krbtgt/* or kadmin/* with new principals without the attribute. This
attribute can be set via the network protocol, but can only be removed using kadmin.local.

-randkey
Sets the key of the principal to a random value.

-nokey
Causes the principal to be created with no key. New in release 1.12.

-pw password
Sets the password of the principal to the specified string and does not prompt for a password. Note: using this
option in a shell script may expose the password to other users on the system via the process list.

-e enc:salt,. . .
Uses the specified keysalt list for setting the keys of the principal. See Keysalt lists in kdc.conf for a list of
possible values.

-x db_princ_args
Indicates database-specific options. The options for the LDAP database module are:

-x dn=dn
Specifies the LDAP object that will contain the Kerberos principal being created.

19.1. kadmin 107

Kerberos Administration Guide, Release 1.22.1

-x linkdn=dn
Specifies the LDAP object to which the newly created Kerberos principal object will point.

-x containerdn=container_dn
Specifies the container object under which the Kerberos principal is to be created.

-x tktpolicy=policy
Associates a ticket policy to the Kerberos principal.

Note:

• The containerdn and linkdn options cannot be specified with the dn option.

• If the dn or containerdn options are not specified while adding the principal, the principals are created
under the principal container configured in the realm or the realm container.

• dn and containerdn should be within the subtrees or principal container configured in the realm.

Example:

kadmin: addprinc jennifer
No policy specified for "jennifer@ATHENA.MIT.EDU";
defaulting to no policy.
Enter password for principal jennifer@ATHENA.MIT.EDU:
Re-enter password for principal jennifer@ATHENA.MIT.EDU:
Principal "jennifer@ATHENA.MIT.EDU" created.
kadmin:

modify_principal

modify_principal [options] principal

Modifies the specified principal, changing the fields as specified. The options to add_principal also apply to this
command, except for the -randkey, -pw, and -e options. In addition, the option -clearpolicy will clear the current
policy of a principal.

This command requires the modify privilege.

Alias: modprinc

Options (in addition to the addprinc options):

-unlock
Unlocks a locked principal (one which has received too many failed authentication attempts without enough time
between them according to its password policy) so that it can successfully authenticate.

rename_principal

rename_principal [-force] old_principal new_principal

Renames the specified old_principal to new_principal. This command prompts for confirmation, unless the -force
option is given.

This command requires the add and delete privileges.

Alias: renprinc

108 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

add_alias

add_alias alias_princ target_princ

Create an alias alias_princ pointing to target_princ. Aliases may be chained (that is, target_princ may itself be an
alias) up to a depth of 10.

This command requires the add privilege for alias_princ and the modify privilege for target_princ.

(New in release 1.22.)

Aliases: alias

delete_principal

delete_principal [-force] principal

Deletes the specified principal or alias from the database. This command prompts for deletion, unless the -force option
is given.

This command requires the delete privilege.

Alias: delprinc

change_password

change_password [options] principal

Changes the password of principal. Prompts for a new password if neither -randkey or -pw is specified.

This command requires the changepw privilege, or that the principal running the program is the same as the principal
being changed.

Alias: cpw

The following options are available:

-randkey
Sets the key of the principal to a random value.

-pw password
Set the password to the specified string. Using this option in a script may expose the password to other users on
the system via the process list.

-e enc:salt,. . .
Uses the specified keysalt list for setting the keys of the principal. See Keysalt lists in kdc.conf for a list of
possible values.

-keepold
Keeps the existing keys in the database. This flag is usually not necessary except perhaps for krbtgt principals.

Example:

kadmin: cpw systest
Enter password for principal systest@BLEEP.COM:
Re-enter password for principal systest@BLEEP.COM:
Password for systest@BLEEP.COM changed.
kadmin:

19.1. kadmin 109

Kerberos Administration Guide, Release 1.22.1

purgekeys

purgekeys [-all|-keepkvno oldest_kvno_to_keep] principal

Purges previously retained old keys (e.g., from change_password -keepold) from principal. If -keepkvno is specified,
then only purges keys with kvnos lower than oldest_kvno_to_keep. If -all is specified, then all keys are purged. The
-all option is new in release 1.12.

This command requires the modify privilege.

get_principal

get_principal [-terse] principal

Gets the attributes of principal. With the -terse option, outputs fields as quoted tab-separated strings.

This command requires the inquire privilege, or that the principal running the the program to be the same as the one
being listed.

Alias: getprinc

Examples:

kadmin: getprinc tlyu/admin
Principal: tlyu/admin@BLEEP.COM
Expiration date: [never]
Last password change: Mon Aug 12 14:16:47 EDT 1996
Password expiration date: [never]
Maximum ticket life: 0 days 10:00:00
Maximum renewable life: 7 days 00:00:00
Last modified: Mon Aug 12 14:16:47 EDT 1996 (bjaspan/admin@BLEEP.COM)
Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 1
Key: vno 1, aes256-cts-hmac-sha384-192
MKey: vno 1
Attributes:
Policy: [none]

kadmin: getprinc -terse systest
systest@BLEEP.COM 3 86400 604800 1
785926535 753241234 785900000
tlyu/admin@BLEEP.COM 786100034 0 0
kadmin:

110 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

list_principals

list_principals [expression]

Retrieves all or some principal names. expression is a shell-style glob expression that can contain the wild-card char-
acters ?, *, and []. All principal names matching the expression are printed. If no expression is provided, all principal
names are printed. If the expression does not contain an @ character, an @ character followed by the local realm is
appended to the expression.

This command requires the list privilege.

Alias: listprincs, get_principals, getprincs

Example:

kadmin: listprincs test*
test3@SECURE-TEST.OV.COM
test2@SECURE-TEST.OV.COM
test1@SECURE-TEST.OV.COM
testuser@SECURE-TEST.OV.COM
kadmin:

get_strings

get_strings principal

Displays string attributes on principal.

This command requires the inquire privilege.

Alias: getstrs

set_string

set_string principal name value

Sets a string attribute on principal. String attributes are used to supply per-principal configuration to the KDC and
some KDC plugin modules. The following string attribute names are recognized by the KDC:

require_auth
Specifies an authentication indicator which is required to authenticate to the principal as a service. Multiple
indicators can be specified, separated by spaces; in this case any of the specified indicators will be accepted.
(New in release 1.14.)

session_enctypes
Specifies the encryption types supported for session keys when the principal is authenticated to as a server. See
Encryption types in kdc.conf for a list of the accepted values.

otp
Enables One Time Passwords (OTP) preauthentication for a client principal. The value is a JSON string repre-
senting an array of objects, each having optional type and username fields.

pkinit_cert_match
Specifies a matching expression that defines the certificate attributes required for the client certificate used by
the principal during PKINIT authentication. The matching expression is in the same format as those used by the
pkinit_cert_match option in krb5.conf . (New in release 1.16.)

19.1. kadmin 111

Kerberos Administration Guide, Release 1.22.1

pac_privsvr_enctype
Forces the encryption type of the PAC KDC checksum buffers to the specified encryption type for tickets issued to
this server, by deriving a key from the local krbtgt key if it is of a different encryption type. It may be necessary
to set this value to “aes256-sha1” on the cross-realm krbtgt entry for an Active Directory realm when using
aes-sha2 keys on the local krbtgt entry.

This command requires the modify privilege.

Alias: setstr

Example:

set_string host/foo.mit.edu session_enctypes aes128-cts
set_string user@FOO.COM otp "[{""type"":""hotp"",""username"":""al""}]"

del_string

del_string principal key

Deletes a string attribute from principal.

This command requires the delete privilege.

Alias: delstr

add_policy

add_policy [options] policy

Adds a password policy named policy to the database.

This command requires the add privilege.

Alias: addpol

The following options are available:

-maxlife time
(duration or getdate string) Sets the maximum lifetime of a password.

-minlife time
(duration or getdate string) Sets the minimum lifetime of a password.

-minlength length
Sets the minimum length of a password.

-minclasses number
Sets the minimum number of character classes required in a password. The five character classes are lower case,
upper case, numbers, punctuation, and whitespace/unprintable characters.

-history number
Sets the number of past keys kept for a principal. This option is not supported with the LDAP KDC database
module.

-maxfailure maxnumber
Sets the number of authentication failures before the principal is locked. Authentication failures are only tracked
for principals which require preauthentication. The counter of failed attempts resets to 0 after a successful attempt
to authenticate. A maxnumber value of 0 (the default) disables lockout.

112 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

-failurecountinterval failuretime
(duration or getdate string) Sets the allowable time between authentication failures. If an authentication failure
happens after failuretime has elapsed since the previous failure, the number of authentication failures is reset to
1. A failuretime value of 0 (the default) means forever.

-lockoutduration lockouttime
(duration or getdate string) Sets the duration for which the principal is locked from authenticating if too many
authentication failures occur without the specified failure count interval elapsing. A duration of 0 (the default)
means the principal remains locked out until it is administratively unlocked with modprinc -unlock.

-allowedkeysalts
Specifies the key/salt tuples supported for long-term keys when setting or changing a principal’s password/keys.
See Keysalt lists in kdc.conf for a list of the accepted values, but note that key/salt tuples must be separated with
commas (‘,’) only. To clear the allowed key/salt policy use a value of ‘-‘.

Example:

kadmin: add_policy -maxlife "2 days" -minlength 5 guests
kadmin:

modify_policy

modify_policy [options] policy

Modifies the password policy named policy. Options are as described for add_policy.

This command requires the modify privilege.

Alias: modpol

delete_policy

delete_policy [-force] policy

Deletes the password policy named policy. Prompts for confirmation before deletion. The command will fail if the
policy is in use by any principals.

This command requires the delete privilege.

Alias: delpol

Example:

kadmin: del_policy guests
Are you sure you want to delete the policy "guests"?
(yes/no): yes
kadmin:

19.1. kadmin 113

Kerberos Administration Guide, Release 1.22.1

get_policy

get_policy [-terse] policy

Displays the values of the password policy named policy. With the -terse flag, outputs the fields as quoted strings
separated by tabs.

This command requires the inquire privilege.

Alias: getpol

Examples:

kadmin: get_policy admin
Policy: admin
Maximum password life: 180 days 00:00:00
Minimum password life: 00:00:00
Minimum password length: 6
Minimum number of password character classes: 2
Number of old keys kept: 5
Reference count: 17

kadmin: get_policy -terse admin
admin 15552000 0 6 2 5 17
kadmin:

The “Reference count” is the number of principals using that policy. With the LDAP KDC database module, the
reference count field is not meaningful.

list_policies

list_policies [expression]

Retrieves all or some policy names. expression is a shell-style glob expression that can contain the wild-card characters
?, *, and []. All policy names matching the expression are printed. If no expression is provided, all existing policy
names are printed.

This command requires the list privilege.

Aliases: listpols, get_policies, getpols.

Examples:

kadmin: listpols
test-pol
dict-only
once-a-min
test-pol-nopw

kadmin: listpols t*
test-pol
test-pol-nopw
kadmin:

114 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

ktadd

ktadd [options] principal
ktadd [options] -glob princ-exp

Adds a principal, or all principals matching princ-exp, to a keytab file. Each principal’s keys are randomized in the
process. The rules for princ-exp are described in the list_principals command.

This command requires the inquire and changepw privileges. With the -glob form, it also requires the list privilege.

The options are:

-k[eytab] keytab
Use keytab as the keytab file. Otherwise, the default keytab is used.

-e enc:salt,. . .
Uses the specified keysalt list for setting the new keys of the principal. See Keysalt lists in kdc.conf for a list of
possible values.

-q
Display less verbose information.

-norandkey
Do not randomize the keys. The keys and their version numbers stay unchanged. This option cannot be specified
in combination with the -e option.

An entry for each of the principal’s unique encryption types is added, ignoring multiple keys with the same encryption
type but different salt types.

Alias: xst

Example:

kadmin: ktadd -k /tmp/foo-new-keytab host/foo.mit.edu
Entry for principal host/foo.mit.edu@ATHENA.MIT.EDU with kvno 3,

encryption type aes256-cts-hmac-sha1-96 added to keytab
FILE:/tmp/foo-new-keytab

kadmin:

ktremove

ktremove [options] principal [kvno | all | old]

Removes entries for the specified principal from a keytab. Requires no permissions, since this does not require database
access.

If the string “all” is specified, all entries for that principal are removed; if the string “old” is specified, all entries for
that principal except those with the highest kvno are removed. Otherwise, the value specified is parsed as an integer,
and all entries whose kvno match that integer are removed.

The options are:

-k[eytab] keytab
Use keytab as the keytab file. Otherwise, the default keytab is used.

-q
Display less verbose information.

Alias: ktrem

Example:

19.1. kadmin 115

Kerberos Administration Guide, Release 1.22.1

kadmin: ktremove kadmin/admin all
Entry for principal kadmin/admin with kvno 3 removed from keytab

FILE:/etc/krb5.keytab
kadmin:

lock

Lock database exclusively. Use with extreme caution! This command only works with the DB2 KDC database module.

unlock

Release the exclusive database lock.

list_requests

Lists available for kadmin requests.

Aliases: lr, ?

quit

Exit program. If the database was locked, the lock is released.

Aliases: exit, q

19.1.6 HISTORY

The kadmin program was originally written by Tom Yu at MIT, as an interface to the OpenVision Kerberos adminis-
tration program.

19.1.7 ENVIRONMENT

See kerberos(7) for a description of Kerberos environment variables.

19.1.8 SEE ALSO

kpasswd(1), kadmind, kerberos(7)

19.2 kadmind

19.2.1 SYNOPSIS

kadmind [-x db_args] [-r realm] [-m] [-nofork] [-proponly] [-port port-number] [-P pid_file] [-p kdb5_util_path]
[-K kprop_path] [-k kprop_port] [-F dump_file]

116 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

19.2.2 DESCRIPTION

kadmind starts the Kerberos administration server. kadmind typically runs on the primary Kerberos server, which
stores the KDC database. If the KDC database uses the LDAP module, the administration server and the KDC server
need not run on the same machine. kadmind accepts remote requests from programs such as kadmin and kpasswd(1)
to administer the information in these database.

kadmind requires a number of configuration files to be set up in order for it to work:

kdc.conf
The KDC configuration file contains configuration information for the KDC and admin servers. kadmind uses
settings in this file to locate the Kerberos database, and is also affected by the acl_file, dict_file, kadmind_port,
and iprop-related settings.

kadm5.acl
kadmind’s ACL (access control list) tells it which principals are allowed to perform administration actions. The
pathname to the ACL file can be specified with the acl_file kdc.conf variable; by default, it is LOCALSTATEDIR/
krb5kdc/kadm5.acl.

After the server begins running, it puts itself in the background and disassociates itself from its controlling terminal.

kadmind can be configured for incremental database propagation. Incremental propagation allows replica KDC servers
to receive principal and policy updates incrementally instead of receiving full dumps of the database. This facility can
be enabled in the kdc.conf file with the iprop_enable option. Incremental propagation requires the principal kiprop/
PRIMARY\@REALM (where PRIMARY is the primary KDC’s canonical host name, and REALM the realm name). In
release 1.13, this principal is automatically created and registered into the datebase.

19.2.3 OPTIONS

-r realm
specifies the realm that kadmind will serve; if it is not specified, the default realm of the host is used.

-m
causes the master database password to be fetched from the keyboard (before the server puts itself in the back-
ground, if not invoked with the -nofork option) rather than from a file on disk.

-nofork
causes the server to remain in the foreground and remain associated to the terminal.

-proponly
causes the server to only listen and respond to Kerberos replica incremental propagation polling requests. This
option can be used to set up a hierarchical propagation topology where a replica KDC provides incremental
updates to other Kerberos replicas.

-port port-number
specifies the port on which the administration server listens for connections. The default port is determined by
the kadmind_port configuration variable in kdc.conf .

-P pid_file
specifies the file to which the PID of kadmind process should be written after it starts up. This file can be used
to identify whether kadmind is still running and to allow init scripts to stop the correct process.

-p kdb5_util_path
specifies the path to the kdb5_util command to use when dumping the KDB in response to full resync requests
when iprop is enabled.

-K kprop_path
specifies the path to the kprop command to use to send full dumps to replicas in response to full resync requests.

19.2. kadmind 117

Kerberos Administration Guide, Release 1.22.1

-k kprop_port
specifies the port by which the kprop process that is spawned by kadmind connects to the replica kpropd, in order
to transfer the dump file during an iprop full resync request.

-F dump_file
specifies the file path to be used for dumping the KDB in response to full resync requests when iprop is enabled.

-x db_args
specifies database-specific arguments. See Database Options in kadmin for supported arguments.

19.2.4 ENVIRONMENT

See kerberos(7) for a description of Kerberos environment variables.

As of release 1.22, kadmind supports systemd socket activation via the LISTEN_PID and LISTEN_FDS environment
variables. Sockets provided by the caller must correspond to configured listener addresses (via the kadmind_listen
or kpasswd_listen variables or equivalents) or they will be ignored. Any configured listener addresses that do not
correspond to caller-provided sockets will be ignored if socket activation is used.

19.2.5 SEE ALSO

kpasswd(1), kadmin, kdb5_util, kdb5_ldap_util, kadm5.acl, kerberos(7)

19.3 kdb5_util

19.3.1 SYNOPSIS

kdb5_util [-r realm] [-d dbname] [-k mkeytype] [-kv mkeyVNO] [-M mkeyname] [-m] [-sf stashfilename] [-P pass-
word] [-x db_args] command [command_options]

19.3.2 DESCRIPTION

kdb5_util allows an administrator to perform maintenance procedures on the KDC database. Databases can be created,
destroyed, and dumped to or loaded from ASCII files. kdb5_util can create a Kerberos master key stash file or perform
live rollover of the master key.

When kdb5_util is run, it attempts to acquire the master key and open the database. However, execution continues
regardless of whether or not kdb5_util successfully opens the database, because the database may not exist yet or the
stash file may be corrupt.

Note that some KDC database modules may not support all kdb5_util commands.

118 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

19.3.3 COMMAND-LINE OPTIONS

-r realm
specifies the Kerberos realm of the database.

-d dbname
specifies the name under which the principal database is stored; by default the database is that listed in kdc.conf .
The password policy database and lock files are also derived from this value.

-k mkeytype
specifies the key type of the master key in the database. The default is given by the master_key_type variable
in kdc.conf .

-kv mkeyVNO
Specifies the version number of the master key in the database; the default is 1. Note that 0 is not allowed.

-M mkeyname
principal name for the master key in the database. If not specified, the name is determined by the mas-
ter_key_name variable in kdc.conf .

-m
specifies that the master database password should be read from the keyboard rather than fetched from a file on
disk.

-sf stash_file
specifies the stash filename of the master database password. If not specified, the filename is determined by the
key_stash_file variable in kdc.conf .

-P password
specifies the master database password. Using this option may expose the password to other users on the system
via the process list.

-x db_args
specifies database-specific options. See kadmin for supported options.

19.3.4 COMMANDS

create

create [-s]

Creates a new database. If the -s option is specified, the stash file is also created. This command fails if the database
already exists. If the command is successful, the database is opened just as if it had already existed when the program
was first run.

destroy

destroy [-f]

Destroys the database, first overwriting the disk sectors and then unlinking the files, after prompting the user for con-
firmation. With the -f argument, does not prompt the user.

19.3. kdb5_util 119

Kerberos Administration Guide, Release 1.22.1

stash

stash [-f keyfile]

Stores the master principal’s keys in a stash file. The -f argument can be used to override the keyfile specified in
kdc.conf .

dump

dump [-b7|-r13|-r18] [-verbose] [-mkey_convert] [-new_mkey_file mkey_file] [-rev] [-recurse] [file-
name [principals. . .]]

Dumps the current Kerberos and KADM5 database into an ASCII file. By default, the database is dumped in current
format, “kdb5_util load_dump version 7”. If filename is not specified, or is the string “-”, the dump is sent to standard
output. Options:

-b7
causes the dump to be in the Kerberos 5 Beta 7 format (“kdb5_util load_dump version 4”). This was the dump
format produced on releases prior to 1.2.2.

-r13
causes the dump to be in the Kerberos 5 1.3 format (“kdb5_util load_dump version 5”). This was the dump
format produced on releases prior to 1.8.

-r18
causes the dump to be in the Kerberos 5 1.8 format (“kdb5_util load_dump version 6”). This was the dump
format produced on releases prior to 1.11.

-verbose
causes the name of each principal and policy to be printed as it is dumped.

-mkey_convert
prompts for a new master key. This new master key will be used to re-encrypt principal key data in the dumpfile.
The principal keys themselves will not be changed.

-new_mkey_file mkey_file
the filename of a stash file. The master key in this stash file will be used to re-encrypt the key data in the dumpfile.
The key data in the database will not be changed.

-rev
dumps in reverse order. This may recover principals that do not dump normally, in cases where database corrup-
tion has occurred.

-recurse
causes the dump to walk the database recursively (btree only). This may recover principals that do not dump
normally, in cases where database corruption has occurred. In cases of such corruption, this option will probably
retrieve more principals than the -rev option will.

Changed in version 1.15: Release 1.15 restored the functionality of the -recurse option.

Changed in version 1.5: The -recurse option ceased working until release 1.15, doing a normal dump instead of
a recursive traversal.

120 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

load

load [-b7|-r13|-r18] [-hash] [-verbose] [-update] filename

Loads a database dump from the named file into the named database. If no option is given to determine the format of
the dump file, the format is detected automatically and handled as appropriate. Unless the -update option is given, load
creates a new database containing only the data in the dump file, overwriting the contents of any previously existing
database. Note that when using the LDAP KDC database module, the -update flag is required.

Options:

-b7
requires the database to be in the Kerberos 5 Beta 7 format (“kdb5_util load_dump version 4”). This was the
dump format produced on releases prior to 1.2.2.

-r13
requires the database to be in Kerberos 5 1.3 format (“kdb5_util load_dump version 5”). This was the dump
format produced on releases prior to 1.8.

-r18
requires the database to be in Kerberos 5 1.8 format (“kdb5_util load_dump version 6”). This was the dump
format produced on releases prior to 1.11.

-hash
stores the database in hash format, if using the DB2 database type. If this option is not specified, the database
will be stored in btree format. This option is not recommended, as databases stored in hash format are known to
corrupt data and lose principals.

-verbose
causes the name of each principal and policy to be printed as it is dumped.

-update
records from the dump file are added to or updated in the existing database. Otherwise, a new database is created
containing only what is in the dump file and the old one destroyed upon successful completion.

ark

ark [-e enc:salt,. . .] principal

Adds new random keys to principal at the next available key version number. Keys for the current highest key version
number will be preserved. The -e option specifies the list of encryption and salt types to be used for the new keys.

add_mkey

add_mkey [-e etype] [-s]

Adds a new master key to the master key principal, but does not mark it as active. Existing master keys will remain.
The -e option specifies the encryption type of the new master key; see Encryption types in kdc.conf for a list of possible
values. The -s option stashes the new master key in the stash file, which will be created if it doesn’t already exist.

After a new master key is added, it should be propagated to replica servers via a manual or periodic invocation of kprop.
Then, the stash files on the replica servers should be updated with the kdb5_util stash command. Once those steps are
complete, the key is ready to be marked active with the kdb5_util use_mkey command.

19.3. kdb5_util 121

Kerberos Administration Guide, Release 1.22.1

use_mkey

use_mkey mkeyVNO [time]

Sets the activation time of the master key specified by mkeyVNO. Once a master key becomes active, it will be used
to encrypt newly created principal keys. If no time argument is given, the current time is used, causing the specified
master key version to become active immediately. The format for time is getdate string.

After a new master key becomes active, the kdb5_util update_princ_encryption command can be used to update all
principal keys to be encrypted in the new master key.

list_mkeys

list_mkeys

List all master keys, from most recent to earliest, in the master key principal. The output will show the kvno, enctype,
and salt type for each mkey, similar to the output of kadmin getprinc. A * following an mkey denotes the currently
active master key.

purge_mkeys

purge_mkeys [-f] [-n] [-v]

Delete master keys from the master key principal that are not used to protect any principals. This command can be
used to remove old master keys all principal keys are protected by a newer master key.

-f
does not prompt for confirmation.

-n
performs a dry run, showing master keys that would be purged, but not actually purging any keys.

-v
gives more verbose output.

update_princ_encryption

update_princ_encryption [-f] [-n] [-v] [princ-pattern]

Update all principal records (or only those matching the princ-pattern glob pattern) to re-encrypt the key data using the
active database master key, if they are encrypted using a different version, and give a count at the end of the number of
principals updated. If the -f option is not given, ask for confirmation before starting to make changes. The -v option
causes each principal processed to be listed, with an indication as to whether it needed updating or not. The -n option
performs a dry run, only showing the actions which would have been taken.

tabdump

tabdump [-H] [-c] [-e] [-n] [-o outfile] dumptype

Dump selected fields of the database in a tabular format suitable for reporting (e.g., using traditional Unix text pro-
cessing tools) or importing into relational databases. The data format is tab-separated (default), or optionally comma-
separated (CSV), with a fixed number of columns. The output begins with a header line containing field names, unless
suppression is requested using the -H option.

The dumptype parameter specifies the name of an output table (see below).

Options:

122 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

-H
suppress writing the field names in a header line

-c
use comma separated values (CSV) format, with minimal quoting, instead of the default tab-separated (unquoted,
unescaped) format

-e
write empty hexadecimal string fields as empty fields instead of as “-1”.

-n
produce numeric output for fields that normally have symbolic output, such as enctypes and flag names. Also
requests output of time stamps as decimal POSIX time_t values.

-o outfile
write the dump to the specified output file instead of to standard output

Dump types:

alias
principal alias information

aliasname
the name of the alias

targetname
the target of the alias

keydata
principal encryption key information, including actual key data (which is still encrypted in the master key)

name
principal name

keyindex
index of this key in the principal’s key list

kvno
key version number

enctype
encryption type

key
key data as a hexadecimal string

salttype
salt type

salt
salt data as a hexadecimal string

keyinfo
principal encryption key information (as in keydata above), excluding actual key data

princ_flags
principal boolean attributes. Flag names print as hexadecimal numbers if the -n option is specified, and all flag
positions are printed regardless of whether or not they are set. If -n is not specified, print all known flag names
for each principal, but only print hexadecimal flag names if the corresponding flag is set.

name
principal name

19.3. kdb5_util 123

Kerberos Administration Guide, Release 1.22.1

flag
flag name

value
boolean value (0 for clear, or 1 for set)

princ_lockout
state information used for tracking repeated password failures

name
principal name

last_success
time stamp of most recent successful authentication

last_failed
time stamp of most recent failed authentication

fail_count
count of failed attempts

princ_meta
principal metadata

name
principal name

modby
name of last principal to modify this principal

modtime
timestamp of last modification

lastpwd
timestamp of last password change

policy
policy object name

mkvno
key version number of the master key that encrypts this principal’s key data

hist_kvno
key version number of the history key that encrypts the key history data for this principal

princ_stringattrs
string attributes (key/value pairs)

name
principal name

key
attribute name

value
attribute value

princ_tktpolicy
per-principal ticket policy data, including maximum ticket lifetimes

name
principal name

124 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

expiration
principal expiration date

pw_expiration
password expiration date

max_life
maximum ticket lifetime

max_renew_life
maximum renewable ticket lifetime

Examples:

$ kdb5_util tabdump -o keyinfo.txt keyinfo
$ cat keyinfo.txt
name keyindex kvno enctype salttype salt
K/M@EXAMPLE.COM 0 1 aes256-cts-hmac-sha384-192 normal -1
foo@EXAMPLE.COM 0 1 aes128-cts-hmac-sha1-96 normal -1
bar@EXAMPLE.COM 0 1 aes128-cts-hmac-sha1-96 normal -1
$ sqlite3
sqlite> .mode tabs
sqlite> .import keyinfo.txt keyinfo
sqlite> select * from keyinfo where enctype like 'aes256-%';
K/M@EXAMPLE.COM 1 1 aes256-cts-hmac-sha384-192 normal -1
sqlite> .quit
$ awk -F'\t' '$4 ~ /aes256-/ { print }' keyinfo.txt
K/M@EXAMPLE.COM 1 1 aes256-cts-hmac-sha384-192 normal -1

19.3.5 ENVIRONMENT

See kerberos(7) for a description of Kerberos environment variables.

19.3.6 SEE ALSO

kadmin, kerberos(7)

19.4 kdb5_ldap_util

19.4.1 SYNOPSIS

kdb5_ldap_util [-D user_dn [-w passwd]] [-H ldapuri] command [command_options]

19.4. kdb5_ldap_util 125

Kerberos Administration Guide, Release 1.22.1

19.4.2 DESCRIPTION

kdb5_ldap_util allows an administrator to manage realms, Kerberos services and ticket policies.

19.4.3 COMMAND-LINE OPTIONS

-r realm
Specifies the realm to be operated on.

-D user_dn
Specifies the Distinguished Name (DN) of the user who has sufficient rights to perform the operation on the
LDAP server.

-w passwd
Specifies the password of user_dn. This option is not recommended.

-H ldapuri
Specifies the URI of the LDAP server.

By default, kdb5_ldap_util operates on the default realm (as specified in krb5.conf) and connects and authenticates to
the LDAP server in the same manner as :ref:kadmind(8)` would given the parameters in [dbdefaults] in kdc.conf .

19.4.4 COMMANDS

create

create [-subtrees subtree_dn_list] [-sscope search_scope] [-containerref container_reference_dn] [-
k mkeytype] [-kv mkeyVNO] [-M mkeyname] [-m|-P password|-sf stashfilename] [-s] [-maxtktlife
max_ticket_life] [-maxrenewlife max_renewable_ticket_life] [ticket_flags]

Creates realm in directory. Options:

-subtrees subtree_dn_list
Specifies the list of subtrees containing the principals of a realm. The list contains the DNs of the subtree objects
separated by colon (:).

-sscope search_scope
Specifies the scope for searching the principals under the subtree. The possible values are 1 or one (one level),
2 or sub (subtrees).

-containerref container_reference_dn
Specifies the DN of the container object in which the principals of a realm will be created. If the container
reference is not configured for a realm, the principals will be created in the realm container.

-k mkeytype
Specifies the key type of the master key in the database. The default is given by the master_key_type variable
in kdc.conf .

-kv mkeyVNO
Specifies the version number of the master key in the database; the default is 1. Note that 0 is not allowed.

-M mkeyname
Specifies the principal name for the master key in the database. If not specified, the name is determined by the
master_key_name variable in kdc.conf .

-m
Specifies that the master database password should be read from the TTY rather than fetched from a file on the
disk.

126 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

-P password
Specifies the master database password. This option is not recommended.

-sf stashfilename
Specifies the stash file of the master database password.

-s
Specifies that the stash file is to be created.

-maxtktlife max_ticket_life
(getdate string) Specifies maximum ticket life for principals in this realm.

-maxrenewlife max_renewable_ticket_life
(getdate string) Specifies maximum renewable life of tickets for principals in this realm.

ticket_flags
Specifies global ticket flags for the realm. Allowable flags are documented in the description of the
add_principal command in kadmin.

Example:

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
-r ATHENA.MIT.EDU create -subtrees o=org -sscope SUB

Password for "cn=admin,o=org":
Initializing database for realm 'ATHENA.MIT.EDU'
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key:
Re-enter KDC database master key to verify:

modify

modify [-subtrees subtree_dn_list] [-sscope search_scope] [-containerref container_reference_dn] [-
maxtktlife max_ticket_life] [-maxrenewlife max_renewable_ticket_life] [ticket_flags]

Modifies the attributes of a realm. Options:

-subtrees subtree_dn_list
Specifies the list of subtrees containing the principals of a realm. The list contains the DNs of the subtree objects
separated by colon (:). This list replaces the existing list.

-sscope search_scope
Specifies the scope for searching the principals under the subtrees. The possible values are 1 or one (one level),
2 or sub (subtrees).

-containerref container_reference_dn Specifies the DN of the
container object in which the principals of a realm will be created.

-maxtktlife max_ticket_life
(getdate string) Specifies maximum ticket life for principals in this realm.

-maxrenewlife max_renewable_ticket_life
(getdate string) Specifies maximum renewable life of tickets for principals in this realm.

ticket_flags
Specifies global ticket flags for the realm. Allowable flags are documented in the description of the
add_principal command in kadmin.

Example:

19.4. kdb5_ldap_util 127

Kerberos Administration Guide, Release 1.22.1

shell% kdb5_ldap_util -r ATHENA.MIT.EDU -D cn=admin,o=org -H
ldaps://ldap-server1.mit.edu modify +requires_preauth

Password for "cn=admin,o=org":
shell%

view

view

Displays the attributes of a realm.

Example:

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
-r ATHENA.MIT.EDU view

Password for "cn=admin,o=org":
Realm Name: ATHENA.MIT.EDU
Subtree: ou=users,o=org
Subtree: ou=servers,o=org
SearchScope: ONE
Maximum ticket life: 0 days 01:00:00
Maximum renewable life: 0 days 10:00:00
Ticket flags: DISALLOW_FORWARDABLE REQUIRES_PWCHANGE

destroy

destroy [-f]

Destroys an existing realm. Options:

-f
If specified, will not prompt the user for confirmation.

Example:

shell% kdb5_ldap_util -r ATHENA.MIT.EDU -D cn=admin,o=org -H
ldaps://ldap-server1.mit.edu destroy

Password for "cn=admin,o=org":
Deleting KDC database of 'ATHENA.MIT.EDU', are you sure?
(type 'yes' to confirm)? yes
OK, deleting database of 'ATHENA.MIT.EDU'...
shell%

list

list

Lists the names of realms under the container.

Example:

128 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

shell% kdb5_ldap_util -D cn=admin,o=org -H
ldaps://ldap-server1.mit.edu list

Password for "cn=admin,o=org":
ATHENA.MIT.EDU
OPENLDAP.MIT.EDU
MEDIA-LAB.MIT.EDU
shell%

stashsrvpw

stashsrvpw [-f filename] name

Allows an administrator to store the password for service object in a file so that KDC and Administration server can
use it to authenticate to the LDAP server. Options:

-f filename
Specifies the complete path of the service password file. By default, /usr/local/var/service_passwd is
used.

name
Specifies the name of the object whose password is to be stored. If krb5kdc or kadmind are configured for simple
binding, this should be the distinguished name it will use as given by the ldap_kdc_dn or ldap_kadmind_dn
variable in kdc.conf . If the KDC or kadmind is configured for SASL binding, this should be the authentication
name it will use as given by the ldap_kdc_sasl_authcid or ldap_kadmind_sasl_authcid variable.

Example:

kdb5_ldap_util stashsrvpw -f /home/andrew/conf_keyfile
cn=service-kdc,o=org

Password for "cn=service-kdc,o=org":
Re-enter password for "cn=service-kdc,o=org":

create_policy

create_policy [-maxtktlife max_ticket_life] [-maxrenewlife max_renewable_ticket_life] [ticket_flags]
policy_name

Creates a ticket policy in the directory. Options:

-maxtktlife max_ticket_life
(getdate string) Specifies maximum ticket life for principals.

-maxrenewlife max_renewable_ticket_life
(getdate string) Specifies maximum renewable life of tickets for principals.

ticket_flags
Specifies the ticket flags. If this option is not specified, by default, no restriction will be set by the policy.
Allowable flags are documented in the description of the add_principal command in kadmin.

policy_name
Specifies the name of the ticket policy.

Example:

19.4. kdb5_ldap_util 129

Kerberos Administration Guide, Release 1.22.1

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
-r ATHENA.MIT.EDU create_policy -maxtktlife "1 day"
-maxrenewlife "1 week" -allow_postdated +needchange
-allow_forwardable tktpolicy

Password for "cn=admin,o=org":

modify_policy

modify_policy [-maxtktlife max_ticket_life] [-maxrenewlife max_renewable_ticket_life] [ticket_flags]
policy_name

Modifies the attributes of a ticket policy. Options are same as for create_policy.

Example:

kdb5_ldap_util -D cn=admin,o=org -H
ldaps://ldap-server1.mit.edu -r ATHENA.MIT.EDU modify_policy
-maxtktlife "60 minutes" -maxrenewlife "10 hours"
+allow_postdated -requires_preauth tktpolicy

Password for "cn=admin,o=org":

view_policy

view_policy policy_name

Displays the attributes of the named ticket policy.

Example:

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
-r ATHENA.MIT.EDU view_policy tktpolicy

Password for "cn=admin,o=org":
Ticket policy: tktpolicy
Maximum ticket life: 0 days 01:00:00
Maximum renewable life: 0 days 10:00:00
Ticket flags: DISALLOW_FORWARDABLE REQUIRES_PWCHANGE

destroy_policy

destroy_policy [-force] policy_name

Destroys an existing ticket policy. Options:

-force
Forces the deletion of the policy object. If not specified, the user will be prompted for confirmation before
deleting the policy.

policy_name
Specifies the name of the ticket policy.

Example:

130 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
-r ATHENA.MIT.EDU destroy_policy tktpolicy

Password for "cn=admin,o=org":
This will delete the policy object 'tktpolicy', are you sure?
(type 'yes' to confirm)? yes
** policy object 'tktpolicy' deleted.

list_policy

list_policy

Lists ticket policies.

Example:

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
-r ATHENA.MIT.EDU list_policy

Password for "cn=admin,o=org":
tktpolicy
tmppolicy
userpolicy

19.4.5 ENVIRONMENT

See kerberos(7) for a description of Kerberos environment variables.

19.4.6 SEE ALSO

kadmin, kerberos(7)

19.5 krb5kdc

19.5.1 SYNOPSIS

krb5kdc [-x db_args] [-d dbname] [-k keytype] [-M mkeyname] [-p portnum] [-m] [-r realm] [-n] [-w numworkers]
[-P pid_file] [-T time_offset]

19.5.2 DESCRIPTION

krb5kdc is the Kerberos version 5 Authentication Service and Key Distribution Center (AS/KDC).

19.5. krb5kdc 131

Kerberos Administration Guide, Release 1.22.1

19.5.3 OPTIONS

The -r realm option specifies the realm for which the server should provide service. This option may be specified
multiple times to serve multiple realms. If no -r option is given, the default realm (as specified in krb5.conf) will be
served.

The -d dbname option specifies the name under which the principal database can be found. This option does not apply
to the LDAP database.

The -k keytype option specifies the key type of the master key to be entered manually as a password when -m is given;
the default is aes256-cts-hmac-sha1-96.

The -M mkeyname option specifies the principal name for the master key in the database (usually K/M in the KDC’s
realm).

The -m option specifies that the master database password should be fetched from the keyboard rather than from a stash
file.

The -n option specifies that the KDC does not put itself in the background and does not disassociate itself from the
terminal.

The -P pid_file option tells the KDC to write its PID into pid_file after it starts up. This can be used to identify whether
the KDC is still running and to allow init scripts to stop the correct process.

The -p portnum option specifies the default UDP and TCP port numbers which the KDC should listen on for Kerberos
version 5 requests, as a comma-separated list. This value overrides the port numbers specified in the [kdcdefaults]
section of kdc.conf , but may be overridden by realm-specific values. If no value is given from any source, the default
port is 88.

The -w numworkers option tells the KDC to fork numworkers processes to listen to the KDC ports and process requests
in parallel. The top level KDC process (whose pid is recorded in the pid file if the -P option is also given) acts as
a supervisor. The supervisor will relay SIGHUP signals to the worker subprocesses, and will terminate the worker
subprocess if the it is itself terminated or if any other worker process exits.

The -x db_args option specifies database-specific arguments. See Database Options in kadmin for supported argu-
ments.

The -T offset option specifies a time offset, in seconds, which the KDC will operate under. It is intended only for testing
purposes.

19.5.4 EXAMPLE

The KDC may service requests for multiple realms (maximum 32 realms). The realms are listed on the command line.
Per-realm options that can be specified on the command line pertain for each realm that follows it and are superseded
by subsequent definitions of the same option.

For example:

krb5kdc -p 2001 -r REALM1 -p 2002 -r REALM2 -r REALM3

specifies that the KDC listen on port 2001 for REALM1 and on port 2002 for REALM2 and REALM3. Addition-
ally, per-realm parameters may be specified in the kdc.conf file. The location of this file may be specified by the
KRB5_KDC_PROFILE environment variable. Per-realm parameters specified in this file take precedence over op-
tions specified on the command line. See the kdc.conf description for further details.

132 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

19.5.5 ENVIRONMENT

See kerberos(7) for a description of Kerberos environment variables.

As of release 1.22, krb5kdc supports systemd socket activation via the LISTEN_PID and LISTEN_FDS environment
variables. Sockets provided by the caller must correspond to configured listener addresses (via the kdc_listen variable
or equivalent) or they will be ignored. Any configured listener addresses that do not correspond to caller-provided
sockets will be ignored if socket activation is used.

19.5.6 SEE ALSO

kdb5_util, kdc.conf , krb5.conf , kdb5_ldap_util, kerberos(7)

19.6 kprop

19.6.1 SYNOPSIS

kprop [-r realm] [-f file] [-d] [-P port] [-s keytab] replica_host

19.6.2 DESCRIPTION

kprop is used to securely propagate a Kerberos V5 database dump file from the primary Kerberos server to a replica
Kerberos server, which is specified by replica_host. The dump file must be created by kdb5_util.

19.6.3 OPTIONS

-r realm
Specifies the realm of the primary server.

-f file
Specifies the filename where the dumped principal database file is to be found; by default the dumped database
file is normally LOCALSTATEDIR/krb5kdc/replica_datatrans.

-P port
Specifies the port to use to contact the kpropd server on the remote host.

-d
Prints debugging information.

-s keytab
Specifies the location of the keytab file.

19.6. kprop 133

Kerberos Administration Guide, Release 1.22.1

19.6.4 ENVIRONMENT

See kerberos(7) for a description of Kerberos environment variables.

19.6.5 SEE ALSO

kpropd, kdb5_util, krb5kdc, kerberos(7)

19.7 kpropd

19.7.1 SYNOPSIS

kpropd [-r realm] [-A admin_server] [-a acl_file] [-f replica_dumpfile] [-F principal_database] [-p kdb5_util_prog]
[-P port] [–pid-file=pid_file] [-D] [-d] [-s keytab_file]

19.7.2 DESCRIPTION

The kpropd command runs on the replica KDC server. It listens for update requests made by the kprop program. If
incremental propagation is enabled, it periodically requests incremental updates from the primary KDC.

When the replica receives a kprop request from the primary, kpropd accepts the dumped KDC database and places it
in a file, and then runs kdb5_util to load the dumped database into the active database which is used by krb5kdc. This
allows the primary Kerberos server to use kprop to propagate its database to the replica servers. Upon a successful
download of the KDC database file, the replica Kerberos server will have an up-to-date KDC database.

Where incremental propagation is not used, kpropd is commonly invoked out of inetd(8) as a nowait service. This is
done by adding a line to the /etc/inetd.conf file which looks like this:

kprop stream tcp nowait root /usr/local/sbin/kpropd kpropd

kpropd can also run as a standalone daemon, backgrounding itself and waiting for connections on port 754 (or the port
specified with the -P option if given). Standalone mode is required for incremental propagation. Starting in release
1.11, kpropd automatically detects whether it was run from inetd and runs in standalone mode if it is not. Prior to
release 1.11, the -S option is required to run kpropd in standalone mode; this option is now accepted for backward
compatibility but does nothing.

Incremental propagation may be enabled with the iprop_enable variable in kdc.conf . If incremental propagation is en-
abled, the replica periodically polls the primary KDC for updates, at an interval determined by the iprop_replica_poll
variable. If the replica receives updates, kpropd updates its log file with any updates from the primary. kproplog can be
used to view a summary of the update entry log on the replica KDC. If incremental propagation is enabled, the principal
kiprop/replicahostname@REALM (where replicahostname is the name of the replica KDC host, and REALM is the
name of the Kerberos realm) must be present in the replica’s keytab file.

kproplog can be used to force full replication when iprop is enabled.

134 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

19.7.3 OPTIONS

-r realm
Specifies the realm of the primary server.

-A admin_server
Specifies the server to be contacted for incremental updates; by default, the primary admin server is contacted.

-f file
Specifies the filename where the dumped principal database file is to be stored; by default the dumped database
file is LOCALSTATEDIR/krb5kdc/from_master.

-F kerberos_db
Path to the Kerberos database file, if not the default.

-p
Allows the user to specify the pathname to the kdb5_util program; by default the pathname used is SBINDIR/
kdb5_util.

-D
In this mode, kpropd will not detach itself from the current job and run in the background. Instead, it will run in
the foreground.

-d
Turn on debug mode. kpropd will print out debugging messages during the database propogation and will run
in the foreground (implies -D).

-P
Allow for an alternate port number for kpropd to listen on. This is only useful in combination with the -S option.

-a acl_file
Allows the user to specify the path to the kpropd.acl file; by default the path used is LOCALSTATEDIR/krb5kdc/
kpropd.acl.

–pid-file=pid_file
In standalone mode, write the process ID of the daemon into pid_file.

-s keytab_file
Path to a keytab to use for acquiring acceptor credentials.

-x db_args
Database-specific arguments. See Database Options in kadmin for supported arguments.

19.7.4 FILES

kpropd.acl
Access file for kpropd; the default location is /usr/local/var/krb5kdc/kpropd.acl. Each entry is a line
containing the principal of a host from which the local machine will allow Kerberos database propagation via
kprop.

19.7. kpropd 135

Kerberos Administration Guide, Release 1.22.1

19.7.5 ENVIRONMENT

See kerberos(7) for a description of Kerberos environment variables.

19.7.6 SEE ALSO

kprop, kdb5_util, krb5kdc, kerberos(7), inetd(8)

19.8 kproplog

19.8.1 SYNOPSIS

kproplog [-h] [-e num] [-v] kproplog [-R]

19.8.2 DESCRIPTION

The kproplog command displays the contents of the KDC database update log to standard output. It can be used to
keep track of incremental updates to the principal database. The update log file contains the update log maintained by
the kadmind process on the primary KDC server and the kpropd process on the replica KDC servers. When updates
occur, they are logged to this file. Subsequently any KDC replica configured for incremental updates will request the
current data from the primary KDC and update their log file with any updates returned.

The kproplog command requires read access to the update log file. It will display update entries only for the KDC it
runs on.

If no options are specified, kproplog displays a summary of the update log. If invoked on the primary, kproplog also
displays all of the update entries. If invoked on a replica KDC server, kproplog displays only a summary of the updates,
which includes the serial number of the last update received and the associated time stamp of the last update.

19.8.3 OPTIONS

-R
Reset the update log. This forces full resynchronization. If used on a replica then that replica will request a full
resync. If used on the primary then all replicas will request full resyncs.

-h
Display a summary of the update log. This information includes the database version number, state of the
database, the number of updates in the log, the time stamp of the first and last update, and the version num-
ber of the first and last update entry.

-e num
Display the last num update entries in the log. This is useful when debugging synchronization between KDC
servers.

-v
Display individual attributes per update. An example of the output generated for one entry:

Update Entry
Update serial # : 4
Update operation : Add
Update principal : test@EXAMPLE.COM

(continues on next page)

136 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

(continued from previous page)

Update size : 424
Update committed : True
Update time stamp : Fri Feb 20 23:37:42 2004
Attributes changed : 6

Principal
Key data
Password last changed
Modifying principal
Modification time
TL data

19.8.4 ENVIRONMENT

See kerberos(7) for a description of Kerberos environment variables.

19.8.5 SEE ALSO

kpropd, kerberos(7)

19.9 ktutil

19.9.1 SYNOPSIS

ktutil

19.9.2 DESCRIPTION

The ktutil command invokes a command interface from which an administrator can read, write, or edit entries in a
keytab. (Kerberos V4 srvtab files are no longer supported.)

19.9.3 COMMANDS

list

list [-t] [-k] [-e]

Displays the current keylist. If -t, -k, and/or -e are specified, also display the timestamp, key contents, or enctype
(respectively).

Alias: l

19.9. ktutil 137

Kerberos Administration Guide, Release 1.22.1

read_kt

read_kt keytab

Read the Kerberos V5 keytab file keytab into the current keylist.

Alias: rkt

write_kt

write_kt keytab

Write the current keylist into the Kerberos V5 keytab file keytab.

Alias: wkt

clear_list

clear_list

Clear the current keylist.

Alias: clear

delete_entry

delete_entry slot

Delete the entry in slot number slot from the current keylist.

Alias: delent

add_entry

add_entry {-key|-password} -p principal -k kvno [-e enctype] [-f |-s salt]

Add principal to keylist using key or password. If the -f flag is specified, salt information will be fetched from the
KDC; in this case the -e flag may be omitted, or it may be supplied to force a particular enctype. If the -f flag is not
specified, the -e flag must be specified, and the default salt will be used unless overridden with the -s option.

Alias: addent

list_requests

list_requests

Displays a listing of available commands.

Aliases: lr, ?

138 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

quit

quit

Quits ktutil.

Aliases: exit, q

19.9.4 EXAMPLE

ktutil: add_entry -password -p alice@BLEEP.COM -k 1 -e
aes128-cts-hmac-sha1-96

Password for alice@BLEEP.COM:
ktutil: add_entry -password -p alice@BLEEP.COM -k 1 -e

aes256-cts-hmac-sha1-96
Password for alice@BLEEP.COM:
ktutil: write_kt alice.keytab
ktutil:

19.9.5 ENVIRONMENT

See kerberos(7) for a description of Kerberos environment variables.

19.9.6 SEE ALSO

kadmin, kdb5_util, kerberos(7)

19.10 k5srvutil

19.10.1 SYNOPSIS

k5srvutil operation [-i] [-f filename] [-e keysalts]

19.10.2 DESCRIPTION

k5srvutil allows an administrator to list keys currently in a keytab, to obtain new keys for a principal currently in a
keytab, or to delete non-current keys from a keytab.

operation must be one of the following:

list
Lists the keys in a keytab, showing version number and principal name.

change
Uses the kadmin protocol to update the keys in the Kerberos database to new randomly-generated keys, and
updates the keys in the keytab to match. If a key’s version number doesn’t match the version number stored
in the Kerberos server’s database, then the operation will fail. If the -i flag is given, k5srvutil will prompt
for confirmation before changing each key. If the -k option is given, the old and new keys will be displayed.
Ordinarily, keys will be generated with the default encryption types and key salts. This can be overridden with

19.10. k5srvutil 139

Kerberos Administration Guide, Release 1.22.1

the -e option. Old keys are retained in the keytab so that existing tickets continue to work, but delold should be
used after such tickets expire, to prevent attacks against the old keys.

delold
Deletes keys that are not the most recent version from the keytab. This operation should be used some time after
a change operation to remove old keys, after existing tickets issued for the service have expired. If the -i flag is
given, then k5srvutil will prompt for confirmation for each principal.

delete
Deletes particular keys in the keytab, interactively prompting for each key.

In all cases, the default keytab is used unless this is overridden by the -f option.

k5srvutil uses the kadmin program to edit the keytab in place.

19.10.3 ENVIRONMENT

See kerberos(7) for a description of Kerberos environment variables.

19.10.4 SEE ALSO

kadmin, ktutil, kerberos(7)

19.11 sserver

19.11.1 SYNOPSIS

sserver [-p port] [-S keytab] [server_port]

19.11.2 DESCRIPTION

sserver and sclient(1) are a simple demonstration client/server application. When sclient connects to sserver, it performs
a Kerberos authentication, and then sserver returns to sclient the Kerberos principal which was used for the Kerberos
authentication. It makes a good test that Kerberos has been successfully installed on a machine.

The service name used by sserver and sclient is sample. Hence, sserver will require that there be a keytab entry for the
service sample/hostname.domain.name@REALM.NAME. This keytab is generated using the kadmin program. The
keytab file is usually installed as DEFKTNAME.

The -S option allows for a different keytab than the default.

sserver is normally invoked out of inetd(8), using a line in /etc/inetd.conf that looks like this:

sample stream tcp nowait root /usr/local/sbin/sserver sserver

Since sample is normally not a port defined in /etc/services, you will usually have to add a line to /etc/services
which looks like this:

sample 13135/tcp

When using sclient, you will first have to have an entry in the Kerberos database, by using kadmin, and then you have to
get Kerberos tickets, by using kinit(1). Also, if you are running the sclient program on a different host than the sserver

140 Chapter 19. Administration programs

Kerberos Administration Guide, Release 1.22.1

it will be connecting to, be sure that both hosts have an entry in /etc/services for the sample tcp port, and that the same
port number is in both files.

When you run sclient you should see something like this:

sendauth succeeded, reply is:
reply len 32, contents:
You are nlgilman@JIMI.MIT.EDU

19.11.3 COMMON ERROR MESSAGES

1) kinit returns the error:

kinit: Client not found in Kerberos database while getting
initial credentials

This means that you didn’t create an entry for your username in the Kerberos database.

2) sclient returns the error:

unknown service sample/tcp; check /etc/services

This means that you don’t have an entry in /etc/services for the sample tcp port.

3) sclient returns the error:

connect: Connection refused

This probably means you didn’t edit /etc/inetd.conf correctly, or you didn’t restart inetd after editing inetd.conf.

4) sclient returns the error:

sclient: Server not found in Kerberos database while using
sendauth

This means that the sample/hostname@LOCAL.REALM service was not defined in the Kerberos database; it
should be created using kadmin, and a keytab file needs to be generated to make the key for that service principal
available for sclient.

5) sclient returns the error:

sendauth rejected, error reply is:
"No such file or directory"

This probably means sserver couldn’t find the keytab file. It was probably not installed in the proper directory.

19.11.4 ENVIRONMENT

See kerberos(7) for a description of Kerberos environment variables.

19.11. sserver 141

Kerberos Administration Guide, Release 1.22.1

19.11.5 SEE ALSO

sclient(1), kerberos(7), services(5), inetd(8)

142 Chapter 19. Administration programs

143

Kerberos Administration Guide, Release 1.22.1

CHAPTER

TWENTY

MIT KERBEROS DEFAULTS

20.1 General defaults

Description Default Environ-
ment

keytab_definition
file

DEFKTNAME KRB5_KTNAME

Client
keytab_definition
file

DEFCKTNAME KRB5_CLIENT_KTNAME

Kerberos
config file
krb5.conf

/etc/krb5.conf:SYSCONFDIR/krb5.conf KRB5_CONFIG

KDC config
file kdc.conf

LOCALSTATEDIR/krb5kdc/kdc.conf KRB5_KDC_PROFILE

GSS mecha-
nism config
file

SYSCONFDIR/gss/mech GSS_MECH_CONFIG

KDC
database
path (DB2)

LOCALSTATEDIR/krb5kdc/principal

Master key
stash_definition

LOCALSTATEDIR/krb5kdc/.k5.realm

Admin
server
ACL file
kadm5.acl

LOCALSTATEDIR/krb5kdc/kadm5.acl

OTP socket
directory

RUNSTATEDIR/krb5kdc

Plugin base
directory

LIBDIR/krb5/plugins

rcache_definition
directory

/var/tmp KRB5RCACHEDIR

Master key
default enc-
type

aes256-cts-hmac-sha1-96

Default
keysalt list

aes256-cts-hmac-sha1-96:normal aes128-cts-hmac-sha1-96:normal

Permitted
enctypes

aes256-cts-hmac-sha1-96 aes128-cts-hmac-sha1-96
aes256-cts-hmac-sha384-192 aes128-cts-hmac-sha256-128
des3-cbc-sha1 arcfour-hmac-md5 camellia256-cts-cmac
camellia128-cts-cmac

KDC default
port

88

Admin
server port

749

Password
change port

464

144 Chapter 20. MIT Kerberos defaults

Kerberos Administration Guide, Release 1.22.1

20.2 Replica KDC propagation defaults

This table shows defaults used by the kprop and kpropd programs.

Description Default Environment
kprop database dump file LOCALSTATEDIR/krb5kdc/replica_datatrans
kpropd temporary dump file LOCALSTATEDIR/krb5kdc/from_master
kdb5_util location SBINDIR/kdb5_util
kprop location SBINDIR/kprop
kpropd ACL file LOCALSTATEDIR/krb5kdc/kpropd.acl
kprop port 754 KPROP_PORT

20.3 Default paths for Unix-like systems

On Unix-like systems, some paths used by MIT krb5 depend on parameters chosen at build time. For a custom build,
these paths default to subdirectories of /usr/local. When MIT krb5 is integrated into an operating system, the paths
are generally chosen to match the operating system’s filesystem layout.

Description Symbolic name Custom build path Typical OS path
User programs BINDIR /usr/local/bin /usr/bin
Libraries and plugins LIBDIR /usr/local/lib /usr/lib
Parent of KDC state dir LOCALSTATEDIR /usr/local/var /var
Parent of KDC runtime
dir

RUNSTATEDIR /usr/local/var/run /run

Administrative programs SBINDIR /usr/local/sbin /usr/sbin
Alternate krb5.conf dir SYSCONFDIR /usr/local/etc /etc
Default ccache name DEFCCNAME FILE:/tmp/

krb5cc_%{uid}
FILE:/tmp/
krb5cc_%{uid}

Default keytab name DEFKTNAME FILE:/etc/krb5.keytab FILE:/etc/krb5.keytab
Default PKCS11 module PKCS11_MODNAME opensc-pkcs11.so opensc-pkcs11.so

The default client keytab name (DEFCKTNAME) typically defaults to FILE:/usr/local/var/krb5/user/
%{euid}/client.keytab for a custom build. A native build will typically use a path which will vary according
to the operating system’s layout of /var.

20.2. Replica KDC propagation defaults 145

Kerberos Administration Guide, Release 1.22.1

146 Chapter 20. MIT Kerberos defaults

CHAPTER

TWENTYONE

ENVIRONMENT VARIABLES

This content has moved to kerberos(7).

147

Kerberos Administration Guide, Release 1.22.1

148 Chapter 21. Environment variables

CHAPTER

TWENTYTWO

TROUBLESHOOTING

22.1 Trace logging

Most programs using MIT krb5 1.9 or later can be made to provide information about internal krb5 library operations
using trace logging. To enable this, set the KRB5_TRACE environment variable to a filename before running the
program. On many operating systems, the filename /dev/stdout can be used to send trace logging output to standard
output.

Some programs do not honor KRB5_TRACE, either because they use secure library contexts (this generally applies
to setuid programs and parts of the login system) or because they take direct control of the trace logging system using
the API.

Here is a short example showing trace logging output for an invocation of the kvno(1) command:

shell% env KRB5_TRACE=/dev/stdout kvno krbtgt/KRBTEST.COM
[9138] 1332348778.823276: Getting credentials user@KRBTEST.COM ->

krbtgt/KRBTEST.COM@KRBTEST.COM using ccache
FILE:/me/krb5/build/testdir/ccache

[9138] 1332348778.823381: Retrieving user@KRBTEST.COM ->
krbtgt/KRBTEST.COM@KRBTEST.COM from
FILE:/me/krb5/build/testdir/ccache with result: 0/Unknown code 0

krbtgt/KRBTEST.COM@KRBTEST.COM: kvno = 1

22.2 List of errors

22.2.1 Frequently seen errors

1. KDC has no support for encryption type while getting initial credentials

2. credential verification failed: KDC has no support for encryption type

3. Cannot create cert chain: certificate has expired

149

Kerberos Administration Guide, Release 1.22.1

22.2.2 Errors seen by admins

1. kprop: No route to host while connecting to server

2. kprop: Connection refused while connecting to server

3. kprop: Server rejected authentication (during sendauth exchange) while authenticating to server

KDC has no support for encryption type while getting initial credentials

credential verification failed: KDC has no support for encryption type

This most commonly happens when trying to use a principal with only DES keys, in a release (MIT krb5 1.7 or
later) which disables DES by default. DES encryption is considered weak due to its inadequate key size. If you cannot
migrate away from its use, you can re-enable DES by adding allow_weak_crypto = true to the [libdefaults] section
of krb5.conf .

Cannot create cert chain: certificate has expired

This error message indicates that PKINIT authentication failed because the client certificate, KDC certificate, or one
of the certificates in the signing chain above them has expired.

If the KDC certificate has expired, this message appears in the KDC log file, and the client will receive a “Preauthen-
tication failed” error. (Prior to release 1.11, the KDC log file message erroneously appears as “Out of memory”. Prior
to release 1.12, the client will receive a “Generic error”.)

If the client or a signing certificate has expired, this message may appear in trace_logging output from kinit(1) or,
starting in release 1.12, as an error message from kinit or another program which gets initial tickets. The error message
is more likely to appear properly on the client if the principal entry has no long-term keys.

kprop: No route to host while connecting to server

Make sure that the hostname of the replica KDC (as given to kprop) is correct, and that any firewalls between the
primary and the replica allow a connection on port 754.

kprop: Connection refused while connecting to server

If the replica KDC is intended to run kpropd out of inetd, make sure that inetd is configured to accept krb5_prop
connections. inetd may need to be restarted or sent a SIGHUP to recognize the new configuration. If the replica is
intended to run kpropd in standalone mode, make sure that it is running.

kprop: Server rejected authentication (during sendauth exchange) while authenticating to server

Make sure that:

1. The time is synchronized between the primary and replica KDCs.

2. The master stash file was copied from the primary to the expected location on the replica.

3. The replica has a keytab file in the default location containing a host principal for the replica’s hostname.

150 Chapter 22. Troubleshooting

CHAPTER

TWENTYTHREE

ADVANCED TOPICS

23.1 Retiring DES

Version 5 of the Kerberos protocol was originally implemented using the Data Encryption Standard (DES) as a block
cipher for encryption. While it was considered secure at the time, advancements in computational ability have rendered
DES vulnerable to brute force attacks on its 56-bit keyspace. As such, it is now considered insecure and should not be
used (RFC 6649).

23.1.1 History

DES was used in the original Kerberos implementation, and was the only cryptosystem in krb5 1.0. Partial support
for triple-DES (3DES) was added in version 1.1, with full support following in version 1.2. The Advanced Encryption
Standard (AES), which supersedes DES, gained partial support in version 1.3.0 of krb5 and full support in version
1.3.2. However, deployments of krb5 using Kerberos databases created with older versions of krb5 will not necessarily
start using strong crypto for ordinary operation without administrator intervention.

MIT krb5 began flagging deprecated encryption types with release 1.17, and removed DES (single-DES) support in
release 1.18. As a consequence, a release prior to 1.18 is required to perform these migrations.

23.1.2 Types of keys

• The database master key: This key is not exposed to user requests, but is used to encrypt other key material stored
in the kerberos database. The database master key is currently stored as K/M by default.

• Password-derived keys: User principals frequently have keys derived from a password. When a new password is
set, the KDC uses various string2key functions to generate keys in the database for that principal.

• Keytab keys: Application server principals generally use random keys which are not derived from a password.
When the database entry is created, the KDC generates random keys of various enctypes to enter in the database,
which are conveyed to the application server and stored in a keytab.

• Session keys: These are short-term keys generated by the KDC while processing client requests, with an enctype
selected by the KDC.

For details on the various enctypes and how enctypes are selected by the KDC for session keys and client/server long-
term keys, see Encryption types. When using the kadmin interface to generate new long-term keys, the -e argument
can be used to force a particular set of enctypes, overriding the KDC default values.

Note: When the KDC is selecting a session key, it has no knowledge about the kerberos installation on the server
which will receive the service ticket, only what keys are in the database for the service principal. In order to allow un-
interrupted operation to clients while migrating away from DES, care must be taken to ensure that kerberos installations

151

https://datatracker.ietf.org/doc/html/rfc6649.html

Kerberos Administration Guide, Release 1.22.1

on application server machines are configured to support newer encryption types before keys of those new encryption
types are created in the Kerberos database for those server principals.

23.1.3 Upgrade procedure

This procedure assumes that the KDC software has already been upgraded to a modern version of krb5 that supports
non-DES keys, so that the only remaining task is to update the actual keys used to service requests. The realm used for
demonstrating this procedure, ZONE.MIT.EDU, is an example of the worst-case scenario, where all keys in the realm
are DES. The realm was initially created with a very old version of krb5, and supported_enctypes in kdc.conf was set
to a value appropriate when the KDC was installed, but was not updated as the KDC was upgraded:

[realms]
ZONE.MIT.EDU = {

[...]
master_key_type = des-cbc-crc
supported_enctypes = des-cbc-crc:normal des:normal des:v4 des:norealm␣

→˓des:onlyrealm des:afs3
}

This resulted in the keys for all principals in the realm being forced to DES-only, unless specifically requested using
kadmin.

Before starting the upgrade, all KDCs were running krb5 1.11, and the database entries for some “high-value” principals
were:

[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q 'getprinc krbtgt/ZONE.MIT.EDU'
[...]
Number of keys: 1
Key: vno 1, des-cbc-crc:v4
[...]
[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q 'getprinc kadmin/admin'
[...]
Number of keys: 1
Key: vno 15, des-cbc-crc
[...]
[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q 'getprinc kadmin/changepw'
[...]
Number of keys: 1
Key: vno 14, des-cbc-crc
[...]

The krbtgt/REALM key appears to have never been changed since creation (its kvno is 1), and all three database entries
have only a des-cbc-crc key.

152 Chapter 23. Advanced topics

Kerberos Administration Guide, Release 1.22.1

The krbtgt key and KDC keys

Perhaps the biggest single-step improvement in the security of the cell is gained by strengthening the key of the ticket-
granting service principal, krbtgt/REALM—if this principal’s key is compromised, so is the entire realm. Since the
server that will handle service tickets for this principal is the KDC itself, it is easy to guarantee that it will be configured
to support any encryption types which might be selected. However, the default KDC behavior when creating new keys
is to remove the old keys, which would invalidate all existing tickets issued against that principal, rendering the TGTs
cached by clients useless. Instead, a new key can be created with the old key retained, so that existing tickets will still
function until their scheduled expiry (see Changing the krbtgt key).

[root@casio krb5kdc]# enctypes=aes256-cts-hmac-sha1-96:normal,\
> aes128-cts-hmac-sha1-96:normal,des3-hmac-sha1:normal,des-cbc-crc:normal
[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q "cpw -e ${enctypes} -randkey \
> -keepold krbtgt/ZONE.MIT.EDU"
Authenticating as principal root/admin@ZONE.MIT.EDU with password.
Key for "krbtgt/ZONE.MIT.EDU@ZONE.MIT.EDU" randomized.

Note: The new krbtgt@REALM key should be propagated to replica KDCs immediately so that TGTs issued by the
primary KDC can be used to issue service tickets on replica KDCs. Replica KDCs will refuse requests using the new
TGT kvno until the new krbtgt entry has been propagated to them.

It is necessary to explicitly specify the enctypes for the new database entry, since supported_enctypes has not been
changed. Leaving supported_enctypes unchanged makes a potential rollback operation easier, since all new keys of
new enctypes are the result of explicit administrator action and can be easily enumerated. Upgrading the krbtgt key
should have minimal user-visible disruption other than that described in the note above, since only clients which list the
new enctypes as supported will use them, per the procedure in Session key selection. Once the krbtgt key is updated,
the session and ticket keys for user TGTs will be strong keys, but subsequent requests for service tickets will still get
DES keys until the service principals have new keys generated. Application service remains uninterrupted due to the
key-selection procedure on the KDC.

After the change, the database entry is now:

[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q 'getprinc krbtgt/ZONE.MIT.EDU'
[...]
Number of keys: 5
Key: vno 2, aes256-cts-hmac-sha1-96
Key: vno 2, aes128-cts-hmac-sha1-96
Key: vno 2, des3-cbc-sha1
Key: vno 2, des-cbc-crc
Key: vno 1, des-cbc-crc:v4
[...]

Since the expected disruptions from rekeying the krbtgt principal are minor, after a short testing period, it is appropriate
to rekey the other high-value principals, kadmin/admin@REALM and kadmin/changepw@REALM. These are the service
principals used for changing user passwords and updating application keytabs. The kadmin and password-changing
services are regular kerberized services, so the session-key-selection algorithm described in Session key selection ap-
plies. It is particularly important to have strong session keys for these services, since user passwords and new long-term
keys are conveyed over the encrypted channel.

[root@casio krb5kdc]# enctypes=aes256-cts-hmac-sha1-96:normal,\
> aes128-cts-hmac-sha1-96:normal,des3-hmac-sha1:normal
[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q "cpw -e ${enctypes} -randkey \
> kadmin/admin"

(continues on next page)

23.1. Retiring DES 153

Kerberos Administration Guide, Release 1.22.1

(continued from previous page)

Authenticating as principal root/admin@ZONE.MIT.EDU with password.
Key for "kadmin/admin@ZONE.MIT.EDU" randomized.
[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q "cpw -e ${enctypes} -randkey \
> kadmin/changepw"
Authenticating as principal root/admin@ZONE.MIT.EDU with password.
Key for "kadmin/changepw@ZONE.MIT.EDU" randomized.

It is not necessary to retain a single-DES key for these services, since password changes are not part of normal daily
workflow, and disruption from a client failure is likely to be minimal. Furthermore, if a kerberos client experiences
failure changing a user password or keytab key, this indicates that that client will become inoperative once services
are rekeyed to non-DES enctypes. Such problems can be detected early at this stage, giving more time for corrective
action.

Adding strong keys to application servers

Before switching the default enctypes for new keys over to strong enctypes, it may be desired to test upgrading a
handful of services with the new configuration before flipping the switch for the defaults. This still requires using the
-e argument in kadmin to get non-default enctypes:

[root@casio krb5kdc]# enctypes=aes256-cts-hmac-sha1-96:normal,\
> aes128-cts-hmac-sha1-96:normal,des3-cbc-sha1:normal,des-cbc-crc:normal
[root@casio krb5kdc]# kadmin -r ZONE.MIT.EDU -p zephyr/zephyr@ZONE.MIT.EDU -k -t \
> /etc/zephyr/krb5.keytab -q "ktadd -e ${enctypes} \
> -k /etc/zephyr/krb5.keytab zephyr/zephyr@ZONE.MIT.EDU"
Authenticating as principal zephyr/zephyr@ZONE.MIT.EDU with keytab /etc/zephyr/krb5.
→˓keytab.
Entry for principal zephyr/zephyr@ZONE.MIT.EDU with kvno 4, encryption type aes256-cts-
→˓hmac-sha1-96 added to keytab WRFILE:/etc/zephyr/krb5.keytab.
Entry for principal zephyr/zephyr@ZONE.MIT.EDU with kvno 4, encryption type aes128-cts-
→˓hmac-sha1-96 added to keytab WRFILE:/etc/zephyr/krb5.keytab.
Entry for principal zephyr/zephyr@ZONE.MIT.EDU with kvno 4, encryption type des3-cbc-
→˓sha1 added to keytab WRFILE:/etc/zephyr/krb5.keytab.
Entry for principal zephyr/zephyr@ZONE.MIT.EDU with kvno 4, encryption type des-cbc-crc␣
→˓added to keytab WRFILE:/etc/zephyr/krb5.keytab.

Be sure to remove the old keys from the application keytab, per best practice.

[root@casio krb5kdc]# k5srvutil -f /etc/zephyr/krb5.keytab delold
Authenticating as principal zephyr/zephyr@ZONE.MIT.EDU with keytab /etc/zephyr/krb5.
→˓keytab.
Entry for principal zephyr/zephyr@ZONE.MIT.EDU with kvno 3 removed from keytab WRFILE:/
→˓etc/zephyr/krb5.keytab.

154 Chapter 23. Advanced topics

Kerberos Administration Guide, Release 1.22.1

Adding strong keys by default

Once the high-visibility services have been rekeyed, it is probably appropriate to change kdc.conf to generate keys
with the new encryption types by default. This enables server administrators to generate new enctypes with the change
subcommand of k5srvutil, and causes user password changes to add new encryption types for their entries. It will
probably be necessary to implement administrative controls to cause all user principal keys to be updated in a reasonable
period of time, whether by forcing password changes or a password synchronization service that has access to the current
password and can add the new keys.

[realms]
ZONE.MIT.EDU = {

supported_enctypes = aes256-cts-hmac-sha1-96:normal aes128-cts-hmac-sha1-
→˓96:normal des3-cbc-sha1:normal des3-hmac-sha1:normal des-cbc-crc:normal

Note: The krb5kdc process must be restarted for these changes to take effect.

At this point, all service administrators can update their services and the servers behind them to take advantage of strong
cryptography. If necessary, the server’s krb5 installation should be configured and/or upgraded to a version supporting
non-DES keys. See Encryption types for krb5 version and configuration settings. Only when the service is configured
to accept non-DES keys should the key version number be incremented and new keys generated (k5srvutil change
&& k5srvutil delold).

root@dr-willy:~# k5srvutil change
Authenticating as principal host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU with keytab /etc/krb5.
→˓keytab.
Entry for principal host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU with kvno 3, encryption type␣
→˓AES-256 CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5.keytab.
Entry for principal host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU with kvno 3, encryption type␣
→˓AES-128 CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5.keytab.
Entry for principal host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU with kvno 3, encryption type␣
→˓Triple DES cbc mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5.keytab.
Entry for principal host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU with kvno 3, encryption type␣
→˓DES cbc mode with CRC-32 added to keytab WRFILE:/etc/krb5.keytab.
root@dr-willy:~# klist -e -k -t /etc/krb5.keytab
Keytab name: WRFILE:/etc/krb5.keytab
KVNO Timestamp Principal
---- ----------------- --

2 10/10/12 17:03:59 host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU (DES cbc mode with CRC-32)
3 12/12/12 15:31:19 host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU (AES-256 CTS mode with 96-

→˓bit SHA-1 HMAC)
3 12/12/12 15:31:19 host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU (AES-128 CTS mode with 96-

→˓bit SHA-1 HMAC)
3 12/12/12 15:31:19 host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU (Triple DES cbc mode with␣

→˓HMAC/sha1)
3 12/12/12 15:31:19 host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU (DES cbc mode with CRC-32)

root@dr-willy:~# k5srvutil delold
Authenticating as principal host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU with keytab /etc/krb5.
→˓keytab.
Entry for principal host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU with kvno 2 removed from␣
→˓keytab WRFILE:/etc/krb5.keytab.

When a single service principal is shared by multiple backend servers in a load-balanced environment, it may be
necessary to schedule downtime or adjust the population in the load-balanced pool in order to propagate the updated

23.1. Retiring DES 155

Kerberos Administration Guide, Release 1.22.1

keytab to all hosts in the pool with minimal service interruption.

Removing DES keys from usage

This situation remains something of a testing or transitory state, as new DES keys are still being generated, and will be
used if requested by a client. To make more progress removing DES from the realm, the KDC should be configured to
not generate such keys by default.

Note: An attacker posing as a client can implement a brute force attack against a DES key for any principal, if that
key is in the current (highest-kvno) key list. This attack is only possible if allow_weak_crypto = true is enabled on
the KDC. Setting the +requires_preauth flag on a principal forces this attack to be an online attack, much slower than
the offline attack otherwise available to the attacker. However, setting this flag on a service principal is not always
advisable; see the entry in add_principal for details.

The following KDC configuration will not generate DES keys by default:

[realms]
ZONE.MIT.EDU = {

supported_enctypes = aes256-cts-hmac-sha1-96:normal aes128-cts-hmac-sha1-
→˓96:normal des3-cbc-sha1:normal des3-hmac-sha1:normal

Note: As before, the KDC process must be restarted for this change to take effect. It is best practice to update
kdc.conf on all KDCs, not just the primary, to avoid unpleasant surprises should the primary fail and a replica need to
be promoted.

It is now appropriate to remove the legacy single-DES key from the krbtgt/REALM entry:

[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q "cpw -randkey -keepold \
> krbtgt/ZONE.MIT.EDU"
Authenticating as principal host/admin@ATHENA.MIT.EDU with password.
Key for "krbtgt/ZONE.MIT.EDU@ZONE.MIT.EDU" randomized.

After the maximum ticket lifetime has passed, the old database entry should be removed.

[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q 'purgekeys krbtgt/ZONE.MIT.EDU'
Authenticating as principal root/admin@ZONE.MIT.EDU with password.
Old keys for principal "krbtgt/ZONE.MIT.EDU@ZONE.MIT.EDU" purged.

After the KDC is restarted with the new supported_enctypes, all user password changes and application keytab updates
will not generate DES keys by default.

contents-vnder-pressvre:~> kpasswd zonetest@ZONE.MIT.EDU
Password for zonetest@ZONE.MIT.EDU: [enter old password]
Enter new password: [enter new password]
Enter it again: [enter new password]
Password changed.
contents-vnder-pressvre:~> kadmin -r ZONE.MIT.EDU -q 'getprinc zonetest'
[...]
Number of keys: 3
Key: vno 9, aes256-cts-hmac-sha1-96
Key: vno 9, aes128-cts-hmac-sha1-96

(continues on next page)

156 Chapter 23. Advanced topics

Kerberos Administration Guide, Release 1.22.1

(continued from previous page)

Key: vno 9, des3-cbc-sha1
[...]

[kaduk@glossolalia ~]$ kadmin -p kaduk@ZONE.MIT.EDU -r ZONE.MIT.EDU -k \
> -t kaduk-zone.keytab -q 'ktadd -k kaduk-zone.keytab kaduk@ZONE.MIT.EDU'
Authenticating as principal kaduk@ZONE.MIT.EDU with keytab kaduk-zone.keytab.
Entry for principal kaduk@ZONE.MIT.EDU with kvno 3, encryption type aes256-cts-hmac-sha1-
→˓96 added to keytab WRFILE:kaduk-zone.keytab.
Entry for principal kaduk@ZONE.MIT.EDU with kvno 3, encryption type aes128-cts-hmac-sha1-
→˓96 added to keytab WRFILE:kaduk-zone.keytab.
Entry for principal kaduk@ZONE.MIT.EDU with kvno 3, encryption type des3-cbc-sha1 added␣
→˓to keytab WRFILE:kaduk-zone.keytab.

Once all principals have been re-keyed, DES support can be disabled on the KDC (allow_weak_crypto = false),
and client machines can remove allow_weak_crypto = true from their krb5.conf configuration files, completing the
migration. allow_weak_crypto takes precedence over all places where DES enctypes could be explicitly configured.
DES keys will not be used, even if they are present, when allow_weak_crypto = false.

Support for legacy services

If there remain legacy services which do not support non-DES enctypes (such as older versions of AFS), al-
low_weak_crypto must remain enabled on the KDC. Client machines need not have this setting, though—applications
which require DES can use API calls to allow weak crypto on a per-request basis, overriding the system krb5.conf.
However, having allow_weak_crypto set on the KDC means that any principals which have a DES key in the database
could still use those keys. To minimize the use of DES in the realm and restrict it to just legacy services which require
DES, it is necessary to remove all other DES keys. The realm has been configured such that at password and keytab
change, no DES keys will be generated by default. The task then reduces to requiring user password changes and
having server administrators update their service keytabs. Administrative outreach will be necessary, and if the desire
to eliminate DES is sufficiently strong, the KDC administrators may choose to randkey any principals which have not
been rekeyed after some timeout period, forcing the user to contact the helpdesk for access.

23.1.4 The Database Master Key

This procedure does not alter K/M@REALM, the key used to encrypt key material in the Kerberos database. (This is the
key stored in the stash file on the KDC if stash files are used.) However, the security risk of a single-DES key for K/M
is minimal, given that access to material encrypted in K/M (the Kerberos database) is generally tightly controlled. If an
attacker can gain access to the encrypted database, they likely have access to the stash file as well, rendering the weak
cryptography broken by non-cryptographic means. As such, upgrading K/M to a stronger encryption type is unlikely to
be a high-priority task.

Is is possible to upgrade the master key used for the database, if desired. Using kdb5_util’s add_mkey, use_mkey, and
update_princ_encryption commands, a new master key can be added and activated for use on new key material, and
the existing entries converted to the new master key.

23.1. Retiring DES 157

Kerberos Administration Guide, Release 1.22.1

158 Chapter 23. Advanced topics

CHAPTER

TWENTYFOUR

VARIOUS LINKS

24.1 Whitepapers

1. https://kerberos.org/software/whitepapers.html

24.2 Tutorials

1. Fulvio Ricciardi <https://www.kerberos.org/software/tutorial.html>_

24.3 Troubleshooting

1. https://wiki.ncsa.illinois.edu/display/ITS/Windows+Kerberos+Troubleshooting

2. https://www.shrubbery.net/solaris9ab/SUNWaadm/SYSADV6/p27.html

3. https://docs.oracle.com/cd/E19253-01/816-4557/trouble-1/index.html

4. https://docs.microsoft.com/en-us/previous-versions/tn-archive/bb463167(v=technet.10)#EBAA

5. https://bugs.launchpad.net/ubuntu/+source/libpam-heimdal/+bug/86528

159

https://kerberos.org/software/whitepapers.html
https://www.kerberos.org/software/tutorial.html
https://wiki.ncsa.illinois.edu/display/ITS/Windows+Kerberos+Troubleshooting
https://www.shrubbery.net/solaris9ab/SUNWaadm/SYSADV6/p27.html
https://docs.oracle.com/cd/E19253-01/816-4557/trouble-1/index.html
https://docs.microsoft.com/en-us/previous-versions/tn-archive/bb463167(v=technet.10
https://bugs.launchpad.net/ubuntu/+source/libpam-heimdal/+bug/86528

Kerberos Administration Guide, Release 1.22.1

160 Chapter 24. Various links

INDEX

R
RFC

RFC 2253, 25
RFC 2782, 47
RFC 4556, 26, 38, 39
RFC 5480, 16
RFC 6649, 151
RFC 7553, 48
RFC 7748, 16

161

	Installation guide
	Contents
	Installing KDCs
	Install and configure the primary KDC
	Edit KDC configuration files
	krb5.conf
	kdc.conf

	Create the KDC database
	Add administrators to the ACL file
	Add administrators to the Kerberos database
	Start the Kerberos daemons on the primary KDC
	Install the replica KDCs
	Create host keytabs for replica KDCs
	Configure replica KDCs
	Propagate the database to each replica KDC
	Propagation failed?

	Add Kerberos principals to the database
	Switching primary and replica KDCs
	Incremental database propagation

	Installing and configuring UNIX client machines
	Client machine configuration files

	UNIX Application Servers
	The keytab file
	Some advice about secure hosts

	Additional references

	Configuration Files
	Contents
	krb5.conf
	Structure
	Sections
	[libdefaults]
	[realms]
	[domain_realm]
	[capaths]
	[appdefaults]
	[plugins]
	ccselect interface
	pwqual interface
	kadm5_hook interface
	kadm5_auth interface
	clpreauth and kdcpreauth interfaces
	hostrealm interface
	localauth interface
	certauth interface

	PKINIT options
	Specifying PKINIT identity information
	PKINIT krb5.conf options

	Parameter expansion
	Sample krb5.conf file
	FILES
	SEE ALSO

	kdc.conf
	Structure
	Sections
	[kdcdefaults]
	[realms]
	[dbdefaults]
	[dbmodules]
	[logging]
	[otp]

	PKINIT options
	Encryption types
	Keysalt lists
	Sample kdc.conf File
	FILES
	SEE ALSO

	kadm5.acl
	DESCRIPTION
	SYNTAX
	EXAMPLE
	MODULE BEHAVIOR
	SEE ALSO

	Realm configuration decisions
	Realm name
	Mapping hostnames onto Kerberos realms
	Ports for the KDC and admin services
	Replica KDCs
	Hostnames for KDCs
	KDC Discovery
	Database propagation

	Database administration
	Principals
	Policies
	Updating the history key

	Privileges
	Operations on the Kerberos database
	Dumping and loading a Kerberos database
	Updating the master key

	Operations on the LDAP database
	Ticket Policy operations

	Cross-realm authentication
	Changing the krbtgt key
	Incremental database propagation
	Overview
	Sun/MIT incremental propagation differences

	Database types
	Berkeley database module (db2)
	Lightning Memory-Mapped Database module (klmdb)
	LDAP module (kldap)

	Account lockout
	Configuring account lockout
	Testing account lockout
	Account lockout principal state
	KDC replication and account lockout
	KDC performance and account lockout
	KDC setup and account lockout

	Configuring Kerberos with OpenLDAP back-end
	Application servers
	Keytabs
	Adding principals to keytabs
	Removing principals from keytabs
	Using a keytab to acquire client credentials

	Clock Skew
	Getting DNS information correct
	Configuring your firewall to work with Kerberos V5

	Host configuration
	Default realm
	Login authorization
	Plugin module configuration
	KDC location modules
	GSSAPI mechanism modules
	Configuration profile modules

	Backups of secure hosts
	Backing up the Kerberos database

	PKINIT configuration
	Creating certificates
	Generating a certificate authority certificate
	Generating a KDC certificate
	Generating client certificates

	Configuring the KDC
	Configuring the clients
	Anonymous PKINIT
	Freshness tokens

	OTP Preauthentication
	Defining token types
	The default token type
	Token instance configuration
	Other considerations

	SPAKE Preauthentication
	Addressing dictionary attack risks
	Principal names and DNS
	Service principal names
	Service principal canonicalization
	Reverse DNS mismatches
	Overriding application behavior
	Provisioning keytabs
	Specific application advice
	Secure shell (ssh)
	OpenLDAP (ldapsearch, etc.)

	Encryption types
	Enctypes in requests
	Session key selection
	Choosing enctypes for a service
	Configuration variables
	Enctype compatibility
	Migrating away from older encryption types

	HTTPS proxy configuration
	Configuring the clients

	Authentication indicators
	Administration programs
	kadmin
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	DATABASE OPTIONS
	COMMANDS
	add_principal
	modify_principal
	rename_principal
	add_alias
	delete_principal
	change_password
	purgekeys
	get_principal
	list_principals
	get_strings
	set_string
	del_string
	add_policy
	modify_policy
	delete_policy
	get_policy
	list_policies
	ktadd
	ktremove
	lock
	unlock
	list_requests
	quit

	HISTORY
	ENVIRONMENT
	SEE ALSO

	kadmind
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT
	SEE ALSO

	kdb5_util
	SYNOPSIS
	DESCRIPTION
	COMMAND-LINE OPTIONS
	COMMANDS
	create
	destroy
	stash
	dump
	load
	ark
	add_mkey
	use_mkey
	list_mkeys
	purge_mkeys
	update_princ_encryption
	tabdump

	ENVIRONMENT
	SEE ALSO

	kdb5_ldap_util
	SYNOPSIS
	DESCRIPTION
	COMMAND-LINE OPTIONS
	COMMANDS
	create
	modify
	view
	destroy
	list
	stashsrvpw
	create_policy
	modify_policy
	view_policy
	destroy_policy
	list_policy

	ENVIRONMENT
	SEE ALSO

	krb5kdc
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLE
	ENVIRONMENT
	SEE ALSO

	kprop
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT
	SEE ALSO

	kpropd
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	FILES
	ENVIRONMENT
	SEE ALSO

	kproplog
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT
	SEE ALSO

	ktutil
	SYNOPSIS
	DESCRIPTION
	COMMANDS
	list
	read_kt
	write_kt
	clear_list
	delete_entry
	add_entry
	list_requests
	quit

	EXAMPLE
	ENVIRONMENT
	SEE ALSO

	k5srvutil
	SYNOPSIS
	DESCRIPTION
	ENVIRONMENT
	SEE ALSO

	sserver
	SYNOPSIS
	DESCRIPTION
	COMMON ERROR MESSAGES
	ENVIRONMENT
	SEE ALSO

	MIT Kerberos defaults
	General defaults
	Replica KDC propagation defaults
	Default paths for Unix-like systems

	Environment variables
	Troubleshooting
	Trace logging
	List of errors
	Frequently seen errors
	Errors seen by admins
	KDC has no support for encryption type while getting initial credentials
	credential verification failed: KDC has no support for encryption type
	Cannot create cert chain: certificate has expired
	kprop: No route to host while connecting to server
	kprop: Connection refused while connecting to server
	kprop: Server rejected authentication (during sendauth exchange) while authenticating to server

	Advanced topics
	Retiring DES
	History
	Types of keys
	Upgrade procedure
	The krbtgt key and KDC keys
	Adding strong keys to application servers
	Adding strong keys by default
	Removing DES keys from usage
	Support for legacy services

	The Database Master Key

	Various links
	Whitepapers
	Tutorials
	Troubleshooting

	Index

